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Abstract – An original and easy-to-implement method to take
into account movement in the 2D harmonic balance finite ele-
ment modelling of electrical machines is presented. The global
harmonic balance system of algebraic equations is derived by
applying the Galerkin approach to both the space and time dis-
cretisation. The harmonic basis functions, i.e. a cosine and a
sine function for each nonzero frequency and a constant func-
tion 1 for the dc component, are used for approximating the
periodic time variation as well as for weighing the time domain
equations in the fundamental period. In practice, this requires
some elementary manipulations of the moving band stiffness
matrix. Magnetic saturation and electrical circuit coupling are
easily included in the analysis.

As an application example, the noload operation of a per-
manent magnet machine is considered. The voltage and induc-
tion waveforms obtained with the proposed harmonic balance
method are shown to converge well to those obtained with time
stepping.

1. Introduction

The steady-state finite element (FE) analysis of electrical
machines can be carried out either in the time domain or the
frequency domain. The first approach, also referred to as
time stepping, is mostly followed, in spite of the very large
number of time steps to be carried out. Indeed, the time step
∆t to be adopted, which depends on the largest relevant fre-
quency of the system under study, may be very small and in
some cases the transient phenomenon that has to be stepped
through before reaching quasi steady-state may decay very
slowly.

The frequency domain or harmonic balance (HB) ap-
proach [1],[2] is not very popular as it has some evident dis-
advantages. It consists in approximating the periodic time
variation of the magnetic fields by a truncated Fourier series
and results in a single but very large system of nonlinear al-
gebraic equations. Its resolution may be very expensive as
both the number of unknowns and the bandwidth increase
with the number of considered frequencies.

Furthermore, it is difficult to take saturation and move-
ment into account. Some of the authors have treated the first
aspect, the magnetic nonlinearity, in a recent publication [3].
The nonlinear HB equations are straightforwardly solved by
means of the Newton-Raphson method. In this paper, the au-
thors focus on the motional aspect, and extend the method
proposed in [3] to problems with periodic movement. In

particular, a 2D FE model of a rotating electrical machine
having a moving band is considered. The approach can be
equally adopted for an arbitrary time periodic movement (in
e.g. linear machines) if a hybrid finite element – boundary
element model is used [4].

It should be noted that sofar the modelling of electrical
machines in the frequency domain has been awarded little
attention in the literature, unlike its time domain counter-
part. However, one particular case of frequency domain cal-
culations has been and still is extensily carried out. It con-
cerns the harmonic simulation of static devices and induc-
tion machines [5], in which only one frequency is consid-
ered. In induction machines, the slip frequency in the rotor
is simply effected by multiplying the conductivity of the ro-
tor bars by the slip. The saturation is taken into account by
means of an equivalent bh-curve, the choice of which may
affect considerably the accuracy [6]. Obviously the single-
frequency approach can only produce a (rough) estimate of
the fundamental components. A more involved approach
consists in e.g. considering a multi-harmonic stator and ro-
tor model separately and identifying the airgap fields of cor-
responding time and spatial order [7].

In the following sections, the extension of the HBFE
method to rotating electrical machines will be elaborated
and applied to a permanent-magnet machine.

2. Outline of the method

A. 2D magnetostatic problem

We consider a classical 2D magnetostatic problem [8]. In
a domain Ω in the xy-plane, the given current density j =
j(x, y) 1z is directed along the z-axis. The magnetic field
h and the magnetic induction b, the z-component of which
vanishes, are to be calculated. The constitutive law h = ν b,
with ν the reluctivity, and conditions on the boundary of Ω
are supplied.

Permanent magnets can be included in the analysis as
well. The constitutive law h = ν (b + br), where br is the
remanent induction, leads to an equivalent current density
−curl (ν br) in the permanent-magnet domains and to a cur-
rent layer on their boundary. In case of a uniform magneti-
sation (constant νbr), only the latter is nonzero.

The magnetostatic field problem is mostly formulated in
terms of the magnetic vector potential a(x, y), which can
be chosen along the z-axis: a = a(x, y) 1z . From b =



curl a = 1z×grada, it follows that the magnetic Gauss law
div b = 0 automatically holds. Remains to satisfy Ampère’s
law curl h = j, which, expressed in terms of the magnetic
vector potential, reads:

curl (ν curla) = j or div (ν grada) = −j . (1)

A discretisation of the domain Ω in e.g. first order trian-
gular elements allows to approximate the potential a(x, y)
as

a(x, y) =
∑#n

l=1
al αl(x, y), (2)

where αl(x, y) is the piecewisely linear basis function that
is associated with the l-th node in the FE mesh. The total
number of nodes is denoted #n.

Following the Galerkin approach, (1) is weakly imposed
in Ω by weighing it with all #n interpolation functions
αk(x, y):

∫

Ω

(

div(ν grada) + j
)

αk dΩ = 0 . (3)

Considering (2), partial integration of (3) produces a system
of #n algebraic equations in terms of the #n unknown co-
efficients al. If the problem is linear (considering a constant
reluctivity ν), the system of equations is linear as well. It
can be written as follows:

SA = J , (4)

where A is the column matrix in which the #n unknowns
are assembled, and where the elements of the square stiff-
ness matrix S and the column matrix J are given by

Skl =

∫

Ω

ν gradαk · gradαl dΩ , (5)

Jk =

∫

Ω

j(x, y) αk dΩ . (6)

For the sake of brevity, the boundary conditions and per-
manent magnets are not explicitly considered in the present
analysis.

B. Rotating electrical machines

For modelling rotating electrical machines, the FE domain Ω
is commonly split up into three complementary subdomains:
a “stator” Ωs, a “rotor” Ωr and a thin ring Ωmb between
stator and rotor, the so-called moving band (see Fig. 1).
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Fig. 1. 2D FE model consisting of a stator Ωs, a rotor Ωr and a
moving band Ωmb

As the rotor angle θ varies in time, the FE mesh in the
stator and the rotor can remain identical with regard to the
respective reference frames xy and x′y′, while the moving
band needs to be remeshed. For sake of convenience, the
stator and the rotor are connected by a single layer of ele-
ments in the moving band. As the rotor position changes,

the discretisation of the moving band changes in a discon-
tinuous way: the elements are deformed and, intermittently,
the topology of the moving band mesh is (locally) modified
in order to maintain elements of good aspect ratio.

As there are no nodes situated inside the moving band,
the total number of nodes #n does not vary with the rotor
angle θ(t), and equals #ns + #nr, the number of nodes in
the stator and the rotor respectively.

When written in terms of the proper coordinates (i.e. in
the stator or the rotor reference frame), the interpolation
functions are θ-independent, and the interpolation of the
magnetic vector potential can be expressed as

a(x, y, t) =
∑#ns

l=1
asl(t) αsl(x, y) in Ωs , (7)

a(x′, y′, t) =
∑#nr

l=1
arl(t) αrl(x

′, y′) in Ωr . (8)

In the moving band Ωmb , the interpolation is inherently θ-
dependent:

a =
∑

sl

asl(t) αsl(x, y, θ) +
∑

rl

arl(t) αrl(x
′, y′, θ) , (9)

where only the basis functions αsl and αrl associated with
nodes on the outer and the inner boundary respectively of
the moving band are to be considered.

The system of algebraic equations (4) can be partitioned
accordingly:

[

Ss
ss + Smb

ss Smb
sr

Smb
rs Sr

rr + Smb
rr

] [

As

Ar

]

=

[

Js

Jr

]

, (10)

where the subscripts indicate the concerned degrees of free-
dom and the superscript (s, r or mb) indicates the subdo-
main that produces the block in the stiffness matrix.

When ignoring saturation, the diagonal blocks S s
ss and

Sr
rr, due to the stator and the rotor respectively, are time-

invariant. The blocks S
bm
ss , S

bm
rr and S

bm
sr = (Sbm

rs )T , due
to the moving band, depend on the rotor position θ(t).

C. Harmonic balance

Let us now consider a time periodic problem. The current
and/or permanent magnet excitation, Js(t) and Jr(t), and
the rotor position θ(t) (modulo 2π) vary periodically in time,
with fundamental frequency f and period T = 1/f .

The harmonic balance method consists in approximating
the periodic time variation of As(t) and Ar(t) by a trun-
cated Fourier series. The corresponding time basis func-
tions H(t) are

√
2 cos(2πkft) and −

√
2 sin(2πkft) for

each nonzero frequency kf , and a constant function 1 for
the dc component. A different set of frequencies may be
adopted in the stator and the rotor.

The harmonic time discretisation of As(t) and Ar(t) can
thus be written as

As(t) =
∑#hs

λ=1
A

(λ)
s Hsλ(t) , (11)

Ar(t) =
∑#hr

λ=1
A

(λ)
r Hrλ(t) , (12)

where #hs is the number of harmonic basis functions con-
sidered in the stator and the moving band, and where #h r

is the number of functions in the rotor and the moving band.
In the moving band, both sets of frequencies apply.

The harmonic basis functions are orthonormal in the sta-
tor and the rotor respectively. E.g., for those defined in the



stator:

1

T

∫ T

0

Hsκ(t) Hsλ(t) dt = δκ,λ . (13)

Adopting the Galerkin approach, the HB system of alge-
braic equations can be obtained by using the harmonic basis
function as test function as well. The weighing of (4) in the
fundamental period [0, T ] with a basis function H(t) can be
written as

1

T

∫ T

0

(

SA− J

)

H(t) dt = 0 . (14)

Considering the partitioned system (10) and the harmonic
functions that are defined in the stator and the moving band
on the one hand, and in the rotor and the moving band on
the other hand, (14) can be further detailed to

1

T

T
∫

0

(

(Ss
ss + S

mb
ss )As + S

mb
sr Ar − Js

)

Hsκ dt = 0 , (15)

1

T

T
∫

0

(

S
mb
sr As + (Sr

rr + S
mb
rr )Ar − Jr

)

Hrκ dt = 0 . (16)

The time discretisation (11-12) thus leads to a system of
#ns#hs + #nr#hr linear equations in term of an equal
number or unknowns. It can be written as follows:
[

Ss
ssH

+ Smb
ssH

Smb
srH

S
mb
rsH

S
r
rrH

+ S
mb
rrH

] [

AsH

ArH

]

=

[

JsH

JrH

]

, (17)

The harmonic components of As(t) and Ar(t) are assem-
bled in AsH and ArH as follows:

AsH =









A
(1)
s

...

A
(#hs)
s









and ArH =









A
(1)
r

...

A
(#hr)
r









, (18)

and the matrices Ss
ssH

etc. can be partitioned into blocks

S
s(κ,λ)
ssH

etc., where (κ, λ) refers to the pair of harmonic
functions concerned, i.e. Hsκ(t)Hsλ(t), Hrκ(t)Hrλ(t) or
Hrκ(t)Hsλ(t).

From the orthonormality of the basis functions (13), it fol-
lows that the matrices Ss

ssH
and Sr

rrH
have a diagonal block

structure. Indeed, the blocks of e.g. S
s
ssH

are given by

S
s(κ,λ)
ssH =

1

T

∫ T

0

S
s
ss Hsκ(t)Hsλ(t) dt = δκ,λSss . (19)

The matrices produced by the moving band generally
have a full block structure. E.g., the blocks of S

mb

srH are
given by

S
mb(κ,λ)
srH =

1

T

∫ T

0

S
mb

sr (θ(t)) Hsκ(t)Hrλ(t) dt . (20)

Different harmonics in the stator (having the same or dif-
ferent frequency) are thus coupled through the nodes situ-
ated on the outer moving band contour. The same holds
for the rotor harmonics and the nodes on the inner moving
band contour. The stator and the rotor harmonics are cou-
pled through all the nodes situated on outer and inner con-
tour of the moving band.

D. Practical aspects and extension to nonlinear problems

In practice, the integrals (20) over the fundamental period
[0, T ] are approximated by a sum, considering a finite num-
ber of discrete time instants ti. For each corresponding rotor
position θ(ti), the moving band is meshed and it static stiff-
ness matrix is calculated. Then the contribution to the global
HB system matrix is effected, considering all the relevant
pairs of harmonic basis functions.

Saturation can be taken into account as proposed in [3].
The system of nonlinear algebraic equations can be solved
straightforwardly by means of the Newton-Raphson (NR)
method. Hereto, for each NR iteration and for each element
situated in a nonlinear region of the FE domain, the differen-
tial reluctivity tensor ∂h

∂b
multiplied by each relevant pair of

harmonic basis functions needs to be integrated over [0, T ].
Saturation causes all harmonics considered in the nonlinear
region to be coupled.

The constant contribution of the moving band (where the
reluctivity is constant, ν = ν0) and of the linear media in
the stator and the rotor to the Jacobian matrices can be cal-
culated and stored before starting the iterative NR process.

Electrical circuit coupling can be easily considered [9][2].
If the electrical circuit is linear, the electrical coupling does
not require a special harmonic balance treatment. How-
ever, for nonlinear inductive components and resistive com-
ponents (e.g. diodes), the differential inductance (flux de-
rived with respect to current) and the differential resistance
(voltage drop derived with respect to current) have to be pro-
cessed in a similar way as the differential reluctivity tensor
[10].

Both the time domain as the HB systems of algebraic
equation can be solved by means of GMRES with ILU pre-
conditioning, after renumbering with the reverse Cuthill Mc-
Kee algorithm [11][12]. As the fill-in (average number of
nonzero entries per row) increases with the number of con-
sidered frequencies, it is important for the GMRES con-
vergence and the computational cost (computation time and
storage requirements) to set the fill-in of the preconditioning
to a appropriate value.

3. Application example

A. 2D FE model of permanent magnet machine

The proposed HB method is applied to an eight-pole three-
phase permanent-magnet motor [13]. The stator windings
are star connected. The commercial motor has 24 skewed
stator slots (one slot per pole and per phase) and the perma-
nent magnets are mounted in a slightly asymmetric way. As
a result, the distortion of the induced voltages is consider-
ably reduced.

In this paper we consider an especially assembled motor,
that has straight stator slots and in which the magnets are
mounted (nearly) symmetrically. In the following, the mea-
sured noload voltage waveform will be compared to the one
obtained with the 2D FE model using both the time and the
frequency domain approach. Induction waveforms in stator
and rotor will be shown as well.

By imposing anti-periodicity conditions, only one pole
needs to be modelled. The FE discretisation is depicted in
Fig. 2. The airgap is split up in three layers (see zoom in
Fig. 2), the middle of which is the moving band. The mean



Fig. 2. 2D FE model of one pole of the permanent-magnet machine
(#n = 1450; 1880 first order triangles: 1880 in stator, 924 in rotor
and 130 in moving band)
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airgap radius and the minimum airgap width are 25.7 mm
and 0.55 mm respectively. The axial length of the stator and
the rotor core stack is 40 mm. The bh-curve used for the
stator and the rotor iron is shown in Fig. 3.

B. Time-stepping simulation

A time-stepping simulation at 750 rpm is carried out (f =
50 Hz, T = 20 ms). As it concerns a static problem with
a constant excitation, there is no transient. One period is
time-stepped with ∆t = T/360.

In Fig. 4, the obtained line-to-line voltage waveform is
shown together with the measured one. A good agreement
is observed. The spectrum of the calculated line-to-line volt-
age and phase voltage is shown in Fig. 5. The phase voltage
contains important 3rd, 5th, 7th and 9th harmonics. The 3k
harmonics do not appear in the line-to-line voltage.

C. Harmonic balance simulations

Besides the fundamental f = 50Hz component in the stator
and the dc component in the rotor, the magnetic field has
odd harmonics (2k + 1)f in the stator and 6f harmonics in
the rotor.

Five HB calculations with increasing spectrum are carried
out. They are denoted HB 1, HB 5, HB 7, HB 11 and HB
13, and comprise the following harmonics:

HB 1 : 0, 1
HB 5 : 0, 1, 3, 5
HB 7 : 0, 1, 3, 5, 6, 7
HB 11 : 0, 1, 3, 5, 6, 7, 9, 11
HB 13 : 0, 1, 3, 5, 6, 7, 9, 11, 12, 13

In HB 13, e.g., six nonzero frequencies are considered in the
stator, while in the rotor, the dc component and two nonzero
frequencies are considered. This results in a total of 12+5 =
17 harmonic basis functions. For evaluating the HB stiffness
matrix of the moving band numerically, 360 time instants in
[0, T ] and rotor positions θ in [0◦, 90◦] are considered.

Some of the obtained harmonic components of the flux
pattern are shown in Fig. 6.

The waveform of the phase voltage obtained with the five
HB calculations and with the time stepping simulation are
depicted in Fig. 7. A good convergence of the HB wave-
forms to the time stepping one is observed. Note also that
the distortion of the moving band elements may cause some
noise in the calculation voltage, as can be clearly seen in the
zoom in Fig. 7.

The relative amplitude of the frequency components of
the voltage obtained with the HB calculations (where the
amplitudes obtained with time stepping serve as reference)
is shown as a function of the spectrum (HB 1 to HB 13) in
Fig. 8. Notice that the error of the fundamental f component
diminishes from only 1.2% with HB1 to less than 0.04%
with HB 13. HB 13 produces an equally good precision
for the 3f and 5f components (error of 0.3% and 0.05%
respectively). The minimum error of the 7f and 9f is about
5%.

The calculated waveforms of the radial induction in two
points in a stator tooth are shown in Figs. 9. It concerns
the stator tooth that is aligned with the magnet in Fig. 2 and
following, and two points on its axis of symmetry, one close
to the airgap (at r = 26.1 mm) and the other further from the
airgap (at r = 30 mm). Again an excellent agreement of the
time stepping results and the HB results can be observed.
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Fig. 6. Harmonic components of the flux pattern in the rotor and
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In Fig. 10, the radial induction waveforms in two points
in the rotor are depicted. The two points are situated on the
symmetry axis of the permanent magnet, one close to the
airgap (at r = 25mm) and the other further from the airgap
(at r = 20 mm). As the harmonics are multiples of six, only
one sixth of a fundamental period, [0, T/6], is shown.
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Fig. 9. Time-stepping and HB waveforms of the radial induction
in two points in a stator tooth: a point close to the airgap (up) and
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D. Calculation times

All calculation have been carried out on a Pentium III 750
MHz. The approximate calculation times supplied hereafter
should give an indication of computational efficiency of the
HB approach with regard to the stepping approach.

The time stepping simulation (one period, 360 steps, in
average 3 NR iterations per time step) has taken 360 s. The
HB calculations HB 1, HB 5, HB 7, HB 11 and HB 13 have
taken 20 s, 67 s, 153 s, 310 s and 590 s respectively. The
number of NR iterations was 7, 5, 4, 4 and 4 respectively.
For HB 5 to HB 13, the previous solution (i.e. HB 1 to HB
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11) has been used as initial solution for the NR iterative pro-
cess. Without this initialisation, the number of NR iterations
was either 7 or 8.

If only the fundamental component f and some lower or-
der harmonics (3f , 5f ) are of interest, the HB approach is
certainly more efficient than the time domain approach.

4. Conclusions

An original method to take into account movement in the
2D harmonic balance finite element modelling of electrical
machines has been presented. The harmonic balance sys-
tem of algebraic equations has been straightforwardly de-
rived by applying the Galerkin approach to both the space
and the time discretisation. The method can be easily im-
plemented as it only requires some elementary manipula-
tions of the moving band stiffness matrix. Magnetic satura-
tion and electrical circuit coupling are easily included in the
HBFE analysis.

The proposed method has been successfully applied to
a permanent-magnet machine. The HB waveforms of the
noload voltage converge well to the one obtained with time
stepping. The computational cost of the HB calculations is
favourable provided the number of considered frequency is
not too big. Further research will involve the load simulation
of the permanent-magnet machine.

Acknowledgement

The research was carried out in the frame of the Inter-
University Attraction Poles for fundamental research funded
by the Belgian State. L. Vandevelde is Postdoctoral Fel-
low of the Fund for Scientific Research - Flanders (F.W.O.–
Vlaanderen). P. Dular is a Research Associate with the Bel-
gian Fund for Scientific Research (F.N.R.S.).

References

[1] S. Yamada and K. Bessho, “Harmonic field calculation by the
combination of finite element analysis and harmonic balance
method”, IEEE Trans. Magn., vol. 24, pp. 2588–2590, Nov.
1988.

[2] J. Lu, S. Yamada and K. Bessho, “Harmonic balance finite
element method taking account of external circuits and mo-
tion”, IEEE Trans. Magn., vol. 27, pp. 4024–4027, Sept.
1991.

[3] J. Gyselinck, P. Dular, C. Geuzaine and W. Legros, “Har-
monic balance finite element modelling of electromagnetic
devices: a novel approach”, IEEE Trans. Magn., vol. 38,
pp. 521–524, March 2002.

[4] J. Gyselinck, C. Geuzaine, P. Dular and W. Legros, “Multi-
harmonic modelling of motional magnetic field problems
using a hybrid finite element – boundary element discreti-
sation”, Proceedings of the Second International Confer-
ence on Advanced Computational Methods in Engineering
(ACOMEN), May 28–31, 2002.

[5] A. Yahiaoui and F. Bouillault, “Saturation effect on the
electromagnetic behaviour of an induction machine”, IEEE
Trans. Magn., vol. 31, no. 3, pp. 2036–2039, May 1985.

[6] J. Luomi, A. Niemenmaa and A. Arkkio, “On the use of
effective reluctivities in magnetic field analysis of induc-
tion motors fed from sinusoidal voltage source”, Proceed-
ings of the International Conference on Electrical Machines,
München, Germany, Sept. 8–10, pp. 706–709, 1986.

[7] H. De Gersem and K. Hameyer, “Air-Gap flux splitting for
the time-harmonic finite-element simulation of single-phase
induction machines”, IEEE Trans. on Magn., vol. 38, no. 2,
pp. 1221–1224, March 2002.

[8] N. Ida and J. P. A. Bastos, Electromagnetics and calculation
of fields, Springer-Verlag, New York, 1992.

[9] P. Lombard and G. Meunier, “A general method for electric
and magnetic coupled problem in 2D and magnetodynamic
domain”, IEEE Trans. Magn., vol. 28, pp. 1291–1294, March
1992.

[10] J. Gyselinck, P. Dular, C. Geuzaine, and W. Legros, “Two-
dimensional harmonic balance finite element modelling of
electromagnetic devices coupled to nonlinear circuits”, to be
presented at the XVII Symposium Electromagnetic Phenom-
ena in nonlinear Circuits (EPNC), Leuven, Belgium, July
1-3, 2002.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems, 1996.
PWS Publishing Company.

[12] SPARSKIT: a basic tool-kit for sparse matrix computa-
tions, http://www.cs.umn.edu/Research/arpa/
SPARSKIT/sparskit.html.

[13] A. M. Oliveira, P. Kuo-Peng, N. Sadowski, M. S. Andrade,
and J. P. A. Bastos, “A non-a priori approach to analyze elec-
trical machines modeled by FEM connected to static con-
verters”, IEEE Trans. Magn., vol. 38, pp. 933–936, March
2002.


