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Abstract – This paper presents the investigation of the mechan-
ical behaviour of an induction machine stator in relation to vi-
bration problems. The natural frequencies and mode shapes
are investigated by both finite element computations and mea-
surements. The mechanical damping ratios of the different
modes are determined experimentally.

1. Introduction

The (numerical) analysis of vibrations and noise of magnetic
origin of electrical machines is a complex problem. In order
to obtain an accurate assessment of the generated vibrations
and noise, the successive steps of the computation proce-
dure, i.e. the analyses of the magnetic field distribution, the
exciting magnetic forces, the mechanical (vibrational) and
acoustic behaviour, have to be carried out in detail.

In previous papers of the authors, the magnetic field and
force computation in electrical machines, in particular in-
duction motors, has been dealt with. In [1] a magnetic field
and force computation technique, based on magnetic equiv-
alent circuits, has been presented. This computation method
has been applied for the force analysis in induction motors
and takes into account the various effects which affect the
spectral content of the magnetic forces and thus of the vi-
brations and noise, viz stator and rotor slotting, the wind-
ing arrangement (m.m.f. harmonics), eccentricity, saturation
and harmonics of the applied voltage (e.g. inverter supply).
A magnetic force computation method based on the 2D fi-
nite element technique, which may be applied to all kinds of
electromagnetic devices, has been presented in [1].

The present paper focuses on the mechanical behaviour
of induction motors, in particular the stator lamination stack,
in relation to vibration problems. In this respect, the modal
analysis is commonly applied [3, 4].

As electrical machines may have a complex mechani-
cal structure, a step-by-step approach is adopted for the in-
vestigation of the structural behaviour of induction motors,
i.e. from a stator without windings or housing to a com-
plete standard induction motor including 3D effects (such
as skewed rotor slots). In this paper, the results of the first
step, i.e. the analysis of the structural behaviour of the stator
lamination stack, are reported.

Both experimental and numerical investigations are pre-

Fig. 1. Geometry of the stator

TABLE I
GEOMETRICAL DATA OF THE STATOR

outer diameter : 240 mm
inner diameter : 150 mm

axial length : 210 mm
slot depth : 22 mm

tooth width : 5.2 mm

sented . The computations presented in this paper have been
carried out with the ABAQUS finite element software.

The device under study is the stator of an 11 kW induc-
tion motor, depicted in Fig. 1, the geometrical data of which
are listed in Table 1.. On the outer surface there are eight
equidistant notches for the clamps which keep the lamina-
tion stack together.

2. Modal Analysis

If the deformation (and motion) of a structure is described
by means of N degrees of freedom:

x = [x1 . . . xN ]T , (1)

the equations of motion are given by:

ẍ+ ẋ+ x = f (2)



where x and f are the displacement and force vectors
(N × 1) respectively and , and the mass, damping
and stiffness matrices (N ×N ) respectively. By solving the
eigenvalue problem determined by the undamped ( = 0)
homogeneous equations (2), the matrix (N × N ) of the
normalized eigenvectors (mode shapes) ψi (N × 1) is ob-
tained:

= [ψ1 . . .ψN ] with −1 = T (3)

which allows to define the generalized displacement vector
q and generalized force vector h:

x = q (4)

f = h (5)

The equations of motion (2), written in terms of the gener-
alized displacement and force vectors (4)-(5) :

−1 q̈ + −1 q̇ + −1 q = h (6)

⇒ q̈ + q̇ + q = h (7)

where and are diagonal matrices, may be uncoupled
if proportional damping is assumed such that also is diag-
onal. In this case, for each mode i, the following equation is
found according to (7):

miq̈i + ciq̇i + kiqi = hi (i = 1, . . . , N) (8)

or in the Laplace domain:

mi

(

s2 + 2ξiωis+ ω2

i

)

Qi(s) = Hi(s) (9)

where mi, ξi and ωi =
√

ki/mi are the modal mass, damp-
ing ratio and natural pulsation respectively.

According to (4), (5) and (9), the solution of the equa-
tions of motion (2) in the Laplace domain is given by:

X(s) = (s)F (s) (10)

where the transfer matrix (s) is given by:

(s) =
N

∑

i=1

ψiψ
T

i

mi (s2 + 2ξiωis+ ω2

i
)

(11)

3. Finite Element Structural Analysis

A. Two-Dimensional FE models

The natural frequencies and mode shapes were computed by
using a 2D plane stress finite element model, where the mass
density of the steel is %=7800 kg/m3 and where the elasticity
constants are given by the Young modulusE = 210 GPa and
the Poisson ratio ν = 0.28. Damping was not considered.

At first instance, the eight notches in the stator men-
tioned before were neglected in the FE model. Different
FE meshes consisting of first order triangular elements and
with increasing number of nodes were used for computing
the first 40 natural frequencies and mode shapes ψi.

The first 10 natural frequencies, computed by using the
different meshes and by assuming a plane stress condition,
are listed in Table II. We remark that the computed natural

TABLE II
COMPUTED NATURAL FREQUENCIES (HZ) – 2D MODEL

WITHOUT NOTCHES

number of nodes
mode order 8413 12350 26774 40078
1,2,3 - 0 0 0 0
4a 2 1072.3 1063.2 1056.4 1054.5
4b 2 1072.4 1063.3 1056.4 1054.5
5a 3 2834.5 2910.5 2792.3 2787.4
5b 3 2835.2 2810.7 2792.4 2787.4
6a 4 4943.4 4897.1 4858.4 4848.3
6b 4 4943.8 4897.3 4858.5 4848.4
7 0 6546.4 6530.4 6521.8 6519.0

Fig. 2. 2D FE mesh

frequencies decrease with increasing accuracy of the mesh
(increasing number of nodes). Indeed, the mechanical stiff-
ness of the structure is overestimated by the FE discretiza-
tion which results in an overestimation of the natural fre-
quencies.

Modes 1, 2 and 3 correspond to movements as a rigid
body (2 translations and 1 rotation), as no boundary con-
ditions inhibiting these displacements were imposed. The
mode shapes of the modes with the lowest natural frequen-
cies can be characterized as radial deformations of order 2,
3, 4 and 0. Due to the geometrical symmetry, nonzero order
modes form pairs, indicated with a and b, with the same nat-
ural frequency and with mode shapes which are rotated over
a quarter of a period.

Next, a 2D FE model including the notches has been
built. A detail of the mesh, using second order quadrilaterals
(and a few triangles) is shown in Fig.2. The results obtained
by assuming plane stress or plane strain are listed in Table
III.

As expected, the natural frequencies obtained for the
model with notches are (under the same conditions of plane
stress) lower than those for the model without notches. It
should be noted however that the frequencies for modes 6a
and 6b (order 4) now have different values. This can easily
be explained by observing the mode shapes in Fig. 3. Other
low order modes still occur in pairs.

The mode shapes corresponding with the other com-
puted natural frequencies are higher order radial deforma-



11a− fn = 8117.4 Hz7 − fn = 6495.9 Hz

5b− fn = 2720.9 Hz5a− fn = 2720.4 Hz4b− fn = 1027.9 Hz4a− fn = 1027.6 Hz

6a− fn = 4657.1 Hz 6b− fn = 4824.9 Hz

Fig. 3. Computed mode shapesand natural frequencies for the 2D model with notches

TABLE III
COMPUTED NATURAL FREQUENCIES (HZ) – 2D MODEL WITH

NOTCHES

mode order plane stress plane strain
1,2,3 - 0 0
4a 2 1027.6 1070.0
4b 2 1027.9 1070.0
5a 3 2720.4 2830.4
5b 3 2720.9 2830.4
6a 4 4657.1 4843.7
6b 4 4824.9 5016.8
7 0 6495.9 6750.8

tions or are determined by the deformation of the teeth rather
than the yoke, e.g. mode 11a depicted in Fig. 3.

B. Three-Dimensional FE model

In order to investigate possible 3D effects on the natural fre-
quencies, a 3D model of the stator was build as well. For
the sake of simplicity, the stator was modelled by means of
isotropic material, i.e. by neglecting its laminated structure.
The 3D mesh consists of hexahedral elements and has 30
layers in the axial direction. The number of nodes is 96689.

In Table IV the modes indicated with ∗ refer to mode
shapes where the radial displacements of both ends of the
stack are shifted over half a period. This is illustrated in
Fig. 4 for mode 8a, 11a and 13a. The other modes corre-
spond to those obtained with the 2D model. The natural
frequencies obtained with the 3D model are similar to those
obtained with the 2D model for plane strain.

TABLE IV
COMPUTED NATURAL FREQUENCIES – 3D MODEL

mode order natural frequency (Hz)
1,2,3,4,5,6 - 0

7a 2 1082.4
7b 2 1083.0
8a 2∗ 1463.2
8b 2∗ 1463.4
9a 3 2853.6
9b 3 2854.9
10a 3∗ 3379.0
10b 3∗ 3379.5
11a 1∗ 4881.7
11b 1∗ 4882.5
12a 4 4899.4
12b 4 4903.9
13a 4∗ 5370.4
13b 4∗ 5377.3

4. Experimental Determination of Natural
Frequencies, Mode Shapes and Damping

A. Excitation Sources

For the experimental investigation of the mechanical differ-
ent kinds of excitation may be used.

In case of electrical machines, an obvious choice is to
feed one of the windings with a current I . The magnetic
forces are proportional to the square of the inductionB, and
thus to the square of the current I if saturation can be ne-



7a− fn = 1082.4Hz

13a − fn = 5370.4Hz

8a − fn = 1463.2Hz 9a− fn = 2853.6Hz

11a − fn = 3379.0Hz 12a− fn = 4899.4Hz

Fig. 4. Some computed mode shapes (3D model)

glected (at low B). If the current I has the following form:

I = a+ b sin(ωt) (12)

the magnetic force is determined by

F ∝ B2

∝ I2

∝

(

a2 +
b2

2

)

+ 2ab sin(ωt) +
b2

2
cos(2ωt) (13)

By choosing b << a such that the third term of 13 (double
frequency) is negligible in comparison to the second term
(single frequency) and by varying the frequency ω (e.g. by
applying a swept sine), the frequency response between the
vibration and the current can be measured, which is a good
assessment of the frequency response between the vibration
and the magnetic force. One of the advantages of an elec-
tromagnetic excitation is the fact that the applied force is
similar to the force during the normal operation of the ma-
chine.

Also an electromagnetic exciter with a force transducer,
which excites the structure in a single point, may be used.
For the experiments described in this paper, a hand-held ex-
citer has been used such that the stator can easily be ex-
cited in different points. This allows to determine the mode
shapes by vibration measurements in only one or a few
points of the surface.
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Fig. 5. Frequency response function (acceleration vs. applied
force)

B. Frequency Response Function

Figure 5 shows the measured frequency response function
(FRF) of the vibration in a point of the stator surface vs. the
force applied in another point by means of the electromag-
netic exciter, in the frequency range 0 - 6.4 kHz.

The most important peaks in Fig.5 occur at frequencies
of approximately 1050 Hz, 2785 Hz 4820 Hz, and 4900
Hz. These frequencies correspond with the modes of order
2, 3 and 4 found by the numerical analyses, the results of
which were summarized in Tables III and IV. These vibra-
tion modes will further be investigated in more detail. We



already remark that the difference between the natural fre-
quencies of the fourth order modes (6a and 6b) obtained by
means of a 2D model with notches is clearly observed in the
measured FRF of Fig.5 (two distinct peaks at approx. 4820
Hz and 4900 Hz).

C. Natural Frequencies and Damping

When considering n modes with neighbouring natural pul-
sations ωi (i = 1, . . . , n), the transfer function for the accel-
eration in point k vs. the force applied in point l is approxi-
mately given by

gkl(jω) =

n
∑

i=1

ai

−ω2

−ω2 + 2ξiωiωj + ω2

i

(14)

+ (b1 + b2j) + (c1 + c2j)ω
2

for pulsations ω near the considered natural frequencies ωi.
Herein the last terms of the right hand side account for the
contribution of the modes k for which ωk >> ω and ωk <<
ω.

The natural pulsation ωi and damping ratio ξi of some
modes have been determined by fitting the parameters of
(14) to measured FRFs in a least-squares sense by using the
Matlab ’lsqcurvefit’ function.

In Fig. 6 (a) the magnitudes of a measured frequency
response and of the fitted function in the range 1000-1100
Hz are shown. Apparently there are two neighbouring nat-
ural frequencies in this frequency range. Therefore a curve-
fitting problem according to (14) with n = 2 was solved.
The measured and fitted curves are almost identical. Even if
the two natural frequencies cannot be clearly distinguished,
e.g. in the FRF of Fig. 6 (b), curve fitting is still possible.

Figure 6 (c) shows a measured and fitted FRF in the
range 4750-4950 Hz. Here three modes have to be taken
into account (n=3).

The natural frequencies and damping ratios, obtained by
applying curve fitting on the basis of (14), are listed in Table
V

In comparison with the results computed with the 2D
model with notches (Fig. 3 and Table III), additional modes
are observed experimentally. For instance, for the second
and third order modes, only a single natural frequency was
found by the FE analysis, viz 1070 Hz and 2830.4 Hz for
order 2 and 3 respectively (by assuming plane strain). The
experiments reveal for both modes a pair of natural frequen-
cies (Table V). For the fourth order mode two neighbouring
natural frequencies were obtained numerically (4843 Hz and
5016 Hz), while three different modes were observed (Fig. 6
(c) and Table V).

D. Mode Shapes

For the experimental determination of the mode shapes, we
consider the radial displacements of N discrete points on a
circular contour in the middle of the stator. When the ex-
citation frequency is near the natural frequency of mode i,
the transfer matrix (jω) is dominated by this eigenmode.
The accelleration is measured in a single point k while the
structure is consecutively excited in the N points. This way,
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Fig. 6. Measured and fitted frequency response functions

TABLE V
NATURAL FREQUENCIES AND DAMPING RATIOS OBTAINED BY

CURVE FITTING

order fi (Hz) ξi
2 1050 0.00139
2 1055 0.000548
3 2782 0.0015
3 2790 0.0014
4 4815 0.0013
4 4868 0.0078
4 4900 0.00116

the k-th row of the transfer matrix −ω2 (jω) is measured,
which is for ω ≈ ωi approximately given by :

−ω2ψk

i

mi (−ω2 + 2ξiωijω + ω2

i
)
ψT

i
(15)
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Fig. 7. Measured mode shapes (real part of the frequency response
vs. the angular position of the excitation points)

which is thus a measure of the i-th mode shape:

ψi =
[

ψ1

i
. . . ψN

i

]T

. (16)

The mode shapes corresponding with the peaks in the
FRF at approximately 1050 Hz, 2785 Hz, and 4850 Hz were
measured by exciting the stator in N = 24 points. Figure
7 (a) shows the real part of the frequency responses vs. the
angular position of the 24 points for two frequencies near

1050 Hz. The excited vibration clearly has a second order
mode shape for these frequencies, which corresponds with
the computed modes 4 and 7 obtained by the 2D and 3D
computations respectively. Remark the phase shift of ap-
proximately 180◦ between the curves for 1040 Hz and 1055
Hz.

Figures 7 (b) and (c) show the real part of the frequency
responses in the 24 points for 2780 Hz and 4890 Hz respec-
tively. The observed vibrations reveal the computed third or-
der mode shapes of modes 5 (2D model) and 7 (3D model)
and the fourth order mode shapes of modes 6 (2D model)
and 12 (3D model).

5. Conclusion

A detailed investigation of the mechanical behaviour of an
induction machine stator has been carried out by both finite
element computations and experiments. This research will
be continued by modelling the stator with windings and fi-
nally a complete induction machine.
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