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Abstract 

This paper proposes a data-driven system identification 

strategy resulting in robust approximation models with 

minimal prediction-error for a wind turbine drivetrain. Based 

on this approximation model, a predictive controller is 

designed and tested on a variable wind profile. Non-linear 

models of a 10 kW and a 1.5 MW variable-pitch wind turbine 

are developed, based on a Nonlinear Auto Regressive with 

eXogenous (N-ARX) and a discrete-time state space model 

for approximating the wind turbine’s dynamical behaviour. 

The model is based on the advanced NREL wind turbine 

simulator FAST. In this study, the approximation model has 

the wind speed, pitch angle and rotor speed as input 

variables, and the electrical power output as output. 

Simulation results reflect the interactions that occur between 

all three input variables affecting the wind turbine’s 

operational performance. Moreover, using our approach, the 

predictive controller is designed to deal with non-linear 

system characteristics and wind variability. Results show the 

robustness of the controller based on the approximation 

model towards high wind speeds and high turbulent wind 

conditions. 

1 Introduction 

Wind turbines with a Permanent Magnet Synchronous 

Generator (PMSG) are designed to operate over a wide range 

of wind speeds. They are continuously increasing in size, 

recently exceeding the 10 MW mark. However, as the share 

of renewable sources in the grid increases, the need arises for 

these sources to take part in grid balancing and stabilisation, 

e.g., by providing ancillary services. Especially large wind 

farms have the potential to offer a positive contribution. 

However, accurate modelling techniques and control systems 

are required to provide these services in practise [1]. To get a 

better understanding of the wind farm supervisory control 

characteristics and local control systems of individual wind 

turbines, a large investigation of wind turbine modelling and 

identification techniques is needed. Physical modelling, 

besides its complexity, is not ideal to cope with uncertainty 

or prediction errors of dynamic modes of the system. 

However, data-driven system identification and black-box 

modelling may aid to provide a more accurate approximation 

of the wind turbine’s dynamics against stochastic behaviour 

of the wind, which also incorporates the non-linearities of the 

system [2,3]. 

 

Model Predictive Control (MPC) is an advanced control 

algorithm which uses a linearised model of the system to 

make predictions about the future of the process. MPC is able 

to optimize future trajectories and selects the best control 

actions that force the system’s outputs to track the desired 

reference [4]. A robust MPC can also handle the constraints 

and physical limitations. The only disadvantage of MPC is 

the possible heavy computational load, which requires 

powerful and fast processors with a large memory to execute 

the iterative optimization algorithm. However, it is 

undeniable that the advanced high-performance micro-

processors are developing rapidly [5]. 

This paper proposes a simplified, high-order model of wind 

turbine dynamics which are identified based on data-driven 

approximation techniques, including prediction error 

minimization on both Subspace State Space System 

Identification (NS4ID) and nonlinear Auto Regressive with 

eXogenous (ARX). The approximated model apprehends the 

fundamental dynamics of the turbine in all operating regions. 

The simulations have been done on two wind turbines; one 

small wind turbine with a rated power of 10 kW and a large 

wind turbine with a rated power of 1.5 MW. The proposed 

techniques are applied on two very different power ratings to 

show the flexibility and reliability of the method. 

The uniformly sampled data is obtained from simulations 

which have been carried out using the FAST wind turbine 

simulation software. The MPC is designed based on a state 

space model, which is obtained from the proposed system 

identification technique. The MPC aims to track the wind 

turbine’s electrical power set-point for high wind speeds. To 

improve the robust performance, soft constraints are assumed 

which can be violated to let the optimisation algorithm select 

the optimal pitch control action that might cause significant 

load reduction on the blades. 

 

This paper is organized into four sections. In section 2, the 

basics of wind turbine modelling and identification 
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techniques are presented. Furthermore, the formulation of the 

MPC objectives and the constraints are discussed. Section 3 

presents achieved simulation results and section 4 concludes 

and discusses further research. 

2 Methodology 

2.1 System description 

In this paper, a wind turbine system with a Permanent 

Magnet Synchronous Generator (PMSG) [6] and full-sale 

converter is considered. Fig. 1 gives an overview of the 

turbine configuration. The turbine’s mechanical output power 

can be expressed by: 
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Where ρ is the air density, R is the length of the blades (m), V 

is wind speed (m/s) and Cp is the power coefficient. The 

power coefficient is determined by the tip speed ratio and the 

blade’s pitch angle. The tip speed ratio is the dimensionless 

ratio between the blade’s tip speed and the wind speed: 
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Figures 2 and 3 illustrate that a maximum value for the power 

coefficient is reached at a pitch angle of 2° for the 1.5 MW 

turbine and 7° for the 10 kW turbine. By controlling the 

turbine’s rotor speed and pitch angle, the power coefficient 

can be regulated. Here, the generator speed is controlled by 

regulating the generator current through a cascaded control 

system. The slow outer controller provides a reference torque 

signal, which is proportional to the generator current, while 

the fast inner controller regulates the current itself by acting 

on the low-level converter control.  

 

Fig. 1 General structure of a wind turbine with PMSG 

In this study, system identification is performed, based on the 

closed-loop behaviour of the wind turbine. The pitch angle 

(control variable) and rotor speed (which is a consequence of 

regulating generator torque, drivetrain dynamics and 

rotational inertia) and wind speed (input parameter) are 

considered as the main inputs [7]. The electrical power 

injected into the grid is assumed to be the output. In the data-

driven model approximation, it is necessary to apply 

perturbation signals and excite all of the system modes. 

Hence, the turbine is simulated at several wind speed levels. 

The turbulence level is gradually increased up to 18%, which 

can be considered as a highly turbulent condition. Saturation 

and rate limiters are applied on the pitch control signal to 

model the practical limitations of the pitching system. 

 

Fig. 2 Power coefficient of 10 kW wind turbine as a function 

of pitch and tip speed ratio (contour and 3D plot) 

 

Fig. 3 Power coefficient of the 1.5 MW wind turbine as a 

function of pitch and tip speed ratio (contour and 3D plot) 
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2.1.1 State space model: In this section, a fourth-order linear 

state space model is derived based on the closed-loop 

behaviour of the wind turbine system. The model includes the 

turbine rotor and drivetrain. The main focus of this section is 

to discuss a novel and practical approach to approximate the 

dynamic control of a wind turbine generator from captured 

data, under non-stationary and highly turbulent wind 

conditions. It is worth noting that the wind turbine dynamics 

can be split into a static non-linearity and a linear time 

invariant (LTI) subsystem. The LTI part can be identified 

using a closed loop subspace identification. 

Consider a combined deterministic-stochastic discrete-time 

state space model as: 

             ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x kT T Ax kT Bu kT Ke kT

y kT Cx kT Du kT e kT

   

  

            (3) 

With 0.01T   being the sampling interval at time instant k, 

( ) [ , ]u kT    is the vector of measured 

inputs, ( ) [ ]ey kT P is the electrical power considered as the 

vector of measured output and ( )x kT is a four-dimensional 

unknown discrete state vector which does not necessarily 

have physical interpretation but with a conceptual relevance. 

 

It is assumed that ( )e kT is an unmeasured Gaussian zero-

mean white noise. System matrices A, B, C, D and K are 

unknown as well as the initial condition. In this section, the 

Subspace State Space System Identification (N4SID) method, 

based on QR decomposition, is used to estimate the system 

state variables [8]. Figures 4 and 5 show the results for the 

N4SID method compared to FAST simulations, the latter can 

be regarded as synthetic data originating from an actual wind 

turbine drivetrain. Adequate tracking performances of both 

the 10 kW (Fig. 4) and 1.5 MW (Fig. 5) wind turbine 

drivetrain can be observed when using the N4SID based 

model.  

 

2.1.2 Nonlinear ARX model: A nonlinear data-based 

approximation approach is proposed, based on a low-order 

nonlinear ARX model, which involves the detection of the 

system structure by finding the regressors that have the 

highest contribution to the output. The NARX model has the 

following structure:  

( ) ( ( 1),..., ( ), ( 1),..., ( ))y t f y t y t na u t u t nb       (4) 

 
With inputs u(t)=[u1,u2,u3] (corresponding with the wind 

speed, pitch angle and rotor speed) and y(t) the sampled 

output with a maximum of two lags (are known as model 

regressors) and f is a nonlinear function which acts as the 

nonlinearity estimator block and maps the regressors to the 

model output [9]. 

The nonlinear estimator block, which is based on a wavelet 

network as an estimation algorithm [10], includes linear and 

nonlinear terms in parallel and can be formulated as: 
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         (5)  

x is a vector of regressors. L is the linear function. d is a 

scalar offset. r is the mean of the regressors and Q is a 

projection matrix. The discrete equation for two-order NARX 

model with 8 units is shown in equation (6). 

1

1 2 2 3 3

( ) ( ( 1), ( 1), ( 1),...

( 2), ( 1), ( 2), ( 1), ( 2))

y t f y t y t u t

u t u t u t u t u t

   

    
       (6) 

Results show that higher order models may produce an 

unstable output. The performance of the NARX model with 

the prediction error minimization is shown in Fig. 4 and 5.  

 

 

Fig. 4 FAST and Identified model output of 10 kW 

 

Fig. 5 FAST and Identified model output of 1.5 MW 

2.1.3 Identification using prediction error minimization: The 

complexity of system identification of wind turbines with 

robust approximation techniques is still a challenge. To tackle 

this, two main steps are proposed in this study. First, 

applying subspace system identification and NARX on 

inputs/output sampled data for identification (simulation 

focus) and next, minimizing an identification error criterion 

or maximizing a certain likelihood function. This can also be 

interpreted as minimization of the least square criterion 

(prediction focus) over the estimated error [11]. The 

performance of the error prediction minimization on both 

models is summarized in Tables 1 and 2 in terms of the 

percentage of best fit, Final Prediction Error (FPE) and Mean 

Square Error (MSE). 
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Table 1 Performance of system identification methods 

10 kW PMSG 

 Simulation focus Prediction focus 

 N4SID NARX N4SID NARX 

Best Fit 73.24% 79.49% 98.03% 96.76% 

MSE 0.0872 0.001281 0.00047 0.00128 

FPE 0.0061 0.001295 0.00048 0.00129 

 

Table 2 Performance of system identification methods 

1.5 MW PMSG 

 Simulation focus Prediction focus 

 N4SID NARX N4SID NARX 

Best Fit 90.92% 95.53% 97.89% 99.3% 

MSE 864.3 5.183 46.63 5.179 

FPE 127.8 5.53 47.39 5.53 

 

2.2 Model predictive control 

The purpose of this section is to design a model predictive 

controller for the 1.5 MW and 10 kW variable-pitch variable-

speed wind turbines. The primary goal of this MPC is to 

regulate the wind turbine power production by control of the 

blade's pitch angle for wind speeds above the nominal value. 

In this work, the MPC uses the state-space model generated 

by the data-driven system identification. 

 

Above the nominal wind speed, the output power of the 

turbine is classically kept constant and the rotational speed 

should be kept as close as possible to the nominal value to 

avoid excess rotor speed. In practice, this is done by a 

combination of the pitch control, which keeps the rotor speed 

constant, and by maintaining a nearly constant generator 

torque [12,13]. In the MPC design, wind speed is considered 

as the measured disturbance and the pitch angle is the main 

manipulated variable to keep the rotor speed close to the 

nominal value with minimum stress on the generator. When 

the turbine is used to provide flexibility services to the grid, 

the power should be regulated instead of keeping it constant. 

The MPC is also capable of providing this power control. 

 

2.2.1 Performance and constraints specifications: The goal 

of the MPC is to track the electrical power to the desired 

level by determining the optimal pitch angle and minimizing 

the deviation of rotor speed from the nominal value. The 

MPC satisfies this goal by making predictions about the 

future behaviour of the system using the linearised state space 

model and using an optimizer which guarantees the optimal 

trajectory. This is done by minimizing the following cost 

function: 
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With the constraints: 

min max

min max

min maxy y y

  

  

 

 

 

 

P and M are the prediction and control horizon, respectively. 

( 1)k i   is the predicted adjustment in blade pitch angle 

and ( 1)k i   is the predicted rotational speed deviation 

during the sampling interval. ,yk k  and k 
 are the 

weighting factors. The weighting factor k 
is used for 

penalising rotor speed deviation from its nominal value by 

choosing it sufficiently lager than the factor which is used for   

the pitch control as the main manipulated variable. The state 

space model described in section 2.1.1 with (A, B, C and D) 

matrices is providing the MPC’s internal model. The column 

of D can be defined as the measured disturbance channel 

entering the plant and therefore can reflect the effect of high 

wind speeds, which is specified as measured noise. The 

optimization problem has been solved by using the standard 

quadratic programming method. 

2.2.2 Controller Design and robustness: After defining the 

plant model, the cost function and the constraints, choosing 

proper values for the MPC parameters would be the next step. 

This does not only affect the control performance but also 

affects the complexity and computational load. The rate at 

which the controller executes the optimal control algorithm is 

defined by choosing the sample time in the range where the 

controller is able to react to the disturbances sufficiently fast 

but without introducing an excessive computational load to 

the controller. The best is to fit 10 to 20 samples within the 

rise time of the steady state response (sample time for the  

1.5 MW turbine is set at 0.06s and 0.1s for the 10 KW). The 

prediction horizon is set at 10 time-steps. The control horizon 

is chosen at 20% of the prediction horizon. 

 

Although the main objective of using MPC is to control the 

wind turbine’s electrical power above the nominal wind 

speed, it also results in load mitigation by a significant 

reduction in blade pitch amplitude and its rate of change. 

Therefore, by choosing soft output constraints, the quadratic 

programming might not be feasible, but the performance of 

the MPC becomes more robust. On the other hand, increasing 

the value of weighting factors on the control actions forces 

the controller to make smaller and more cautious moves and 

to be less sensitive to prediction inaccuracy, such that the 

robustness of the control actions  improves. This can however 

result in output set-point tracking that is more slow moving 

[12]. Therefore, as the result of the optimal action of the pitch 

controller, the mechanical load on the wind turbine blades 

can be mitigated. It is noteworthy to mention that the 

mechanical load on the blades is known as the significant part 

of wind turbine structural load caused by the effect of wind 

above its nominal value and usually experienced by the 

blade’s roots. Thus, structural load mitigation comes 

subsequently as the secondary result of reference-tracking 

MPC.  

3 Results 

The simulation results of the wind turbine robust model 

predictive controller under turbulent high wind speed 
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conditions, compared with the conventional PI control, are 

shown in Figures 6 and 7.  

 
Fig. 6 Simulation results of the 10 kW wind turbine using 

robust MPC (in red (dotted)) and PI (blue (solid)) 

performance for certain wind speed. The electric power, pitch 

angle (β) and rotational speed (ωr ) are depicted.   

 

 
Fig. 7 Simulation results of the 1.5 MW wind turbine, robust 

MPC (in red (dotted)) and PI (blue (solid)) performance for 

certain wind speed. The electric power, pitch angle (β) and 

rotational speed (ωr ) are depicted.   

The robust MPC is applied on both the 10 kW and 1.5 MW 

wind turbines based on data-driven system identification 

using MATLAB SIMULINK. The results include the 

simulation of wind speed via the TurbSim simulator (see 

Figures 6(a) and 7(a)), the reference tracking of the PI and 

the robust-MPC is shown in Figures 6(b) and 7(b). Figures 

6(c) and 7(c) illustrates the pitch angle response. The 

rotational speed of the generator around nominal speed is 

presented in Figures 6(d) and 7(d)). It can be observed that 

the performance of the robust MPC is slightly improved 

compared to the classical PI control. 

 

4 Conclusion  

In this paper, the focus lies on data-driven system 

identification techniques and the robust approximation of the 

simplified model of variable pitch wind turbine drivetrains 

consisting of a PMSG. This research also shows the potential 

of the proposed model in developing the model predictive 

controller with the goal of electrical power output tracking, 

which is imperatively needed when providing grid balancing 

services with wind farms. It has also been taken into account 

that a deviation from the predefined wind conditions can be 

in contrast with structural load mitigation using the pitch 

controller. Hence, the weighting factors are chosen in a way 

that the MPC is less sensitive to prediction errors and 

uncertainty. Therefore, the robustness of the optimal pitch 

controller above nominal wind speed is enhanced which 

gives rise to the load mitigation consequently.  

The linearised state space model, which is the approximation 

of the nonlinear dynamics of the wind turbine, is directly 

used in the MPC formulation. However, using a nonlinear 

model might turn the MPC into a non-convex optimization 

problem which does not guarantee a global optimum. On the 

other hand, the linearized model does not allow a long 

prediction horizon due to changes in the operating points of 

the system as a function of wind speed. Therefore, gain-

scheduled MPC or adaptive MPC are recommended as the 

more adequate control approaches for a wide range of wind 

turbine operating points which can also benefit from 

predictive capabilities.  
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