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ABSTRACT 

 

The current evolutions in electricity market policies combined with the technical progress in wind farm control 

encourage Wind Power Producers (WPPs) to participate in the joint day-ahead energy and reserve market (JERM). In 

this paper, an advanced bidding strategy dedicated to optimal dispatch of the WPP in the JERM is proposed. The 

suggested strategy exploits a novel bi-objective two-stage chance-constrained stochastic model in which various 

revenue streams, stemming from both day-ahead and real-time stages, are fully accounted for. The first objective of 

the presented model is to allocate the optimal share of the power assigned to each market floor in the day-ahead stage 

so as to maximize the WPP’s profit. Then, the formulation considers the confidence level of delivering the contracted 

reserve power in real-time through an additional competing objective. Meanwhile, the presented method allows us to 

also illustrate the effect of reserve availability as a probabilistic measure on WPP’s profit. In this regard, the wind 

speed and system frequency uncertainties are introduced as stochastic inputs in the proposed framework. The obtained 

revenue streams regarding each market floor as well as the total revenue of the WPP are then evaluated in a Monte 

Carlo out-of-sample analysis. The ex-post samples contain system frequency data from the Belgian market along with 

wind speed data representing the wind turbulence intensity level. Outcomes reveal not only the effectiveness and 

flexibility of the proposed model for enhancing WPPs’ revenues, but also the importance of properly considering the 

uncertain real-time delivery of the contracted reserve power. 

Keywords: Bidding Strategy, Energy and Reserve Market, Chance-Constrained programming, Stochastic 

Optimization, Wind Turbulence Intensity. 

Nomenclature 

 

Abbreviations   

WPP Wind Power Producer. 

JERM Joint Day-Ahead Energy and Reserve Market. 
BTCS Bi-Objective Two-Stage Chance-Constrained Stochastic. 

TSO Transmission System Operator. 

CLRA Confidence Level of Reserve Power Availability. 
TIL Turbulence Intensity Level. 

BRP Balance Responsible Party. 

FCR Frequency Containment Reserve. 
MOP Multi-Objective Programming. 

Sets and Indices  

𝜔/𝛺 Scenario index/ set of scenarios. 

Η Set of first-stage decision variables. 

Ψ Set of second-stage decision variables. 

k Index of MOP sub-problem. 

S Set of feasible solution space in the generic MOP problem. 
i Index of the optimal Pareto solution. 

w Index of wind signal in ex-post analysis. 

𝑡′ Index of balancing stage time-interval in ex-post analysis. 

f Index of frequency signal. 
t Instantaneous time index. 

j Index of imbalance settlement period. 

𝜏𝑗
′ jth imbalance settlement period. 

Parameters  

t Market time unit, i.e. 1 hour. 

Eo Day-ahead energy market price. 

B Imbalance settlement price for over-generation. 
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B Imbalance settlement price for under-generation. 

 The required real-time percentage of FCR. 

f Frequency deviation of the power system. 

Ro Day-ahead reserve power procurement price. 

R Penalty rate regarding deviation of available capacity from the offered bid. 

a Reserve activation price in terms of energy. 

a Reserve activation penalty rate considering availability check. 

𝜋𝜔 Probability of occurrence of scenario 𝜔. 

𝜃𝜔 The activated percentage of the FCR at scenario 𝜔. 

𝑃𝑚𝑖𝑛/𝑃𝑚𝑎𝑥 Minimum/maximum limit of WPP’s generation. 

𝑃𝜔
𝑞
 Total available wind power at scenario 𝜔. 

𝑀 Big-M constant for mixed-integer programming. 

𝑚 Small positivity tolerance in Big-M method. 

𝑘 Right hand side parameter of the constrained objective in kth sub-problem. 

𝐹2𝑚𝑖𝑛/𝐹2𝑀𝑎𝑥 Minimum/maximum bound of the second objective function. 

Q Number of grid points in -constraint method. 

r𝑘 Right hand side parameter of the constrained objective, Risk, in kth sub-problem. 

 Time resolution of reserve power settlement at the balancing stage (10 s). 

N Number of time-intervals at the balancing stage. 

𝑃𝑡′,𝑤 Available capacity regarding reserve market at instance 𝑡′ for wind signal w. 

𝜃𝑡′,𝑓 Percentage of the called reserve at instance 𝑡′ for frequency signal f. 

𝜏′ Imbalance settlement time resolution (1/4 h). 

𝑃̃𝑡,𝑤 Power injected into the network for tth time instance and wind signal w considering wind turbine derating. 

𝑡𝑗  Integral bound of power to calculate the deliverable energy for jth imbalance settlement period. 

𝐸𝜏𝑗
′ ,𝑤 Available energy of wind signal w at imbalance settlement interval 𝜏𝑗

′ regarding wind turbine derating. 

Decision variables of BTCS model 

PRo Reserve bid  regarding the day-ahead reserve market. 
PEo Power bid  regarding the day-ahead energy market. 

Π Total revenue of the WPP in the JERM. 

Π𝐸𝑜 Revenue of WPP regarding day-ahead energy market. 

Π𝑅𝑜 Revenue of WPP regarding day-ahead reserve market. 

Π𝜔
𝐸↑ Revenue of WPP regarding over-generation at scenario 𝜔. 

Π𝜔
𝐸↓ Revenue of WPP regarding under-generation at scenario 𝜔. 

Δ𝑃𝜔
𝐸↑ Positive deviation of injected power at scenario 𝜔 from the offered bid. 

Δ𝑃𝜔
𝐸↓ Negative deviation of injected power at scenario 𝜔 from the offered bid. 

Π𝜔
𝑎↑ Revenue of WPP regarding reserve activation at scenario 𝜔. 

Π𝜔
𝑎↓ Penalty for failing to activate the reserve power at scenario 𝜔.  

Π𝜔
𝑅↓ Penalty regarding the deviation of the reserve power at scenario 𝜔 from the offered bid. 

𝜉𝜔
↑  Binary variable regarding reserve activation at scenario 𝜔. 

𝜉𝜔
↓  Binary variable regarding failure to activate the reserve considering availability at scenario 𝜔. 

∆𝑃𝜔
𝑅 Deviation of available capacity margin at scenario 𝜔 from the offered bid. 

𝑃𝜔
𝑅 Available reserve power at scenario 𝜔. 

𝑃𝑞𝑜 The total amount of day-ahead offered bids. 

𝑃𝜔
𝐸 Delivered power to the energy market at scenario 𝜔. 

𝜇𝜔 Binary variable regarding the availability of sufficient power capacity. 

𝛿𝜔 Binary variable regarding the status of available reserve power at scenario 𝜔. 

𝐹1(𝑥)/ 𝐹2(𝑥) First/second objective function of the generic MOP method. 

Φ Confidence level of revere power availability. 

Φ̅ Risk of inability to provide the reserve power.  

𝑃𝑖
𝑅𝑜 Optimal power bid of day-ahead reserve market for ith Pareto point. 

𝑃𝑖
𝐸𝑜 Optimal power bid of day-ahead energy market for ith Pareto point. 

Other variables  

Π𝐸 Total revenue of WPP regarding energy market and imbalance settlement. 

PE Real-time injected power to the network. 

𝛱𝑅 Total revenue of WPP regarding reserve market and balancing stage. 

PR Real-time available capacity margin. 

Π̃𝑡′,𝑤,𝑖
𝑅𝑜  Ex-post capacity procurement revenue for Pareto point i at time 𝑡′ for wind signal w. 

Π̃𝑡′,(𝑤,𝑓),𝑖
𝑎  Ex-post reserve activation revenue at instance 𝑡′, Pareto point i, wind and frequency signal (w,f). 

Π̃𝑅 Total ex-post revenue of WPP in the reserve market. 

𝛱𝜏𝑗
′ , 𝑤, 𝑖

𝐸  Ex-post revenue of WPP in energy market for Pareto point i, settlement period 𝜏𝑗
′ and wind signal w. 

Π̃𝐸 Ex-post total revenue of WPP in the day-ahead energy market and imbalance settlement. 

∆Π̃𝑛
𝑅% Normalized ex-post revenue deviation of the WPP in the reserve market. 

∆Π̃𝑛
𝐸% Normalized ex-post revenue deviation of the WPP in the energy market. 

∆Π̃𝑛% Normalized ex-post total revenue deviation of the WPP. 

Φ̃̅TIL%  Real-time inability of reserve procurement regarding each TIL in ex-post analysis. 
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1. Introduction 

Liberalization of the electricity market exposed new challenges for secure and reliable operation of the power systems 

compared to the former vertically integrated structure. Therefore, other market floors such as the day-ahead reserve 

market are complementing the day-ahead energy market so as to help compensating for the real-time mismatch 

between generation and demand, thereby improving the dynamic aspects of the power systems [1]. These market floors 

are accompanied by a real-time balancing stage in which the imbalances from the scheduled bids are financially settled 

[2].  

    Meanwhile, the recent worldwide rising investment in renewable energy projects such as large wind power plants 

indicates a broad expansion of their penetration in power systems [3].  Despite the economic and environmental 

benefits of such sources, their intermittent nature deteriorates the power systems reliability and security status to a 

higher extent [4]. Hence, while uncertain generations become more significant in power systems, the necessity for a 

more responsive and costly reserve power increases [5].  Consequently, there is an emerging opportunity for power 

producers (which have fast ramping abilities) to achieve a greater economic advantage in the liberalized electricity 

market. In particular, WPPs could be incentivized to participate in the reserve market since the wind turbines are 

nowadays equipped with fast control schemes which enable them to rapidly alter their output power [6, 7]. Different 

control techniques can be implemented, such as derating, as well as relative and absolute reserve procurement 

strategies.  The de-rating method consists in restricting wind turbine maximum output power by a new specified upper 

bound, thereby creating a flexibility margin for upward regulation. The relative reserve power procurement strategy 

specifies a fixed percentage of the available wind power for curtailment. Finally, the absolute strategy restricts the 

wind turbine output power by a fixed quantity, given that sufficient power is available, to take part in the reserve 

market whereas the rest of the available power is allocated to the energy market [7]. The latter strategy thus prioritizes 

the provision of the contracted reserve power. 

    A possible way to tackle the imbalance cost of wind power deviation is to team up with other stable power sources, 

such as thermal power [8] or hydro technology [9], in order to maximize the portfolio’s profit. However, coordinated 

bidding may not be recognized in some markets [10]. Moreover, owing to the recent developments in the wind turbines’ 

technology, market incentives, and forecast tools, the WPPs are seeking to obtain an optimal offering strategy while 

acting as single GENCO owners in the electricity market [11].  Accordingly, several studies have been devoted to 

devising efficient tools for the participation of WPPs in the day-ahead energy market while minimizing real-time 

energy imbalances [12-18].  

    In [12] a stochastic bidding algorithm for single and dual imbalance settlement schemes is presented to enhance 

WPP’s profit in the day-ahead energy market while minimizing the imbalance costs considering generation and price 

uncertainties. An optimal energy bid is obtained in [13] by reducing the commercial risk of imbalance cost using 

Markov probabilities. In addition, the impact of market closure delays and forecasting window lengths are studied. In 

[14], an hourly bidding strategy for a WPP participating in the day-ahead energy and adjustment market is proposed 

while controlling the risk of profit variability at the expense of a minor decrease in expected profit. In [15] an energy 

offering curve aiming to maximize the WPP’s profit is obtained through the two-dimensional distribution of price and 

wind power prediction errors. The presented offer curve has greater profitability rather than the offer curve of the 

marginal distribution.  An optimal energy bidding strategy to maximize the operating profit of a WPP in a real-time 

market is developed in [16], taking into account the uncertainty of other energy sources.  The presented model employs 

a bi-level stochastic optimization scheme in which the lower-level clears the real-time market and the upper-level 

reduces the negative profit of the WPP. In [17], the negative impact of real-time energy deviations of WPP is mitigated 

by buying a quantity of energy from the intra-day reserve market which is calculated by the Cauchy-Lorentz 

distribution model. In [18] two types of offering strategies hedge the risk of profit variability by relying on a naïve use 

of power forecast and stochastic model. Interestingly, it is shown that the stochastic approach outperforms the bidding 

strategy based on the naïve forecast in terms of expected profit and its variability.  

    However, despite the potential ability of wind turbines in reserve provision, limited attention is devoted to the 

participation of the WPP in the JERM while reducing the imbalances that occur in real-time (for energy and reserve 

contributions). In [19], an analytical method is applied to increase the wind power profit by participating in the JERM. 

In this model, both WPP and the TSO encounter less intra-hour variations in the energy market since part of these 
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variations are absorbed in the reserve market. However, the TSO may further suffer from the risk of real-time reserve 

power unavailability. Moreover, the wind turbine control strategy is neglected in their model. Thus, the obtained 

optimal bids and the expected revenue may not be attainable in practice. In [20], different control strategies for the 

allocation of energy and reserve power in the bidding strategy are taken into account. The proposed model employs 

market penalties and wind power uncertainties in an analytical approach based on the newsvendor problem. The 

optimal bidding strategy of the WPP aiming to maximize its expected profit in the JERM, based on market incentives, 

considering wind power uncertainty is dealt with as a stochastic programming problem in [21]. The proposed method 

also evaluates the impact of having better forecast information, close to the real-time stage, on WPP’s offering strategy. 

    Despite the interesting techno-economic aspect of WPPs’ participation in the JERM, the intermittent nature of their 

output power is a barrier for allowing them to play in the reserve market. Remarkably, market policies are shaped to 

ensure a competitive and liberalized environment for participation of all market players subject to the system security 

and reliability. Notably, reserve capacity requirement is conventionally considered as a deterministic metric, e.g. 

fraction of demand, the largest generator or line contingency, in the market clearing process [22]. However, such 

practice can impose a great cost on the power system’s operation since neglecting the compromise between the 

system’s operating cost and security of supply [22]. Moreover, such criterion leaves out the stochastic nature and 

underlying reliability of the committed units and, thereby could result in a substantial loss-of-load in the power system 

[23]. Accordingly, several approaches in the course of the past 40 years have been presented so as to integrate a 

probabilistic reserve constraint in the market-clearing algorithm [23]. For instance, a probability method is presented 

in [24] such that the reliability of reserve service, based on the probability of not meeting the load, remains fixed. The 

authors in [22] explicitly modeled a probabilistic reserve criterion in the unit commitment problem which properly 

represents the reserve capacity with respect to various risk levels. In [25], a computationally efficient unit commitment 

approach with a probabilistic reserve based on the full capacity outage probability distribution is presented. A pool-

based market-clearing method that incorporates a hybrid deterministic-probabilistic reliability measure based on the 

probabilities of loss-of-load due to the single and double generation outage for scheduling the capacity services is 

proposed in [23]. 

 

    In regard to the aforementioned efforts and, more importantly, the increased uncertainty in power systems, owing 

to the high penetration of renewable energy sources, the incorporation of such probabilistic reserve constraints in the 

electricity market could potentially tackle the problem of wind power integration in the reserve market. 

    Accordingly, reserve market participants should guarantee a certain confidence level of reserve power availability, 

determined by the TSO, in order to be considered as a reserve provider. Nevertheless, while participants ensure a 

certain CLRA, their real-time energy and reserve power deviations should be financially settled. 

    Remarkably, it should be noted that the classical offering strategy of the WPP in the market, which is merely based 

on the market incentives, does not ensure a firm reliability level. In other words, the WPP offers power quantities such 

that the income resulting from the positive incentives are greater than the negative incentives. Also, the TSO is not 

informed about the confidence level of the contracted bid which, in return, deteriorates the system security. Hence, 

this paper aims to address the research gap regarding the optimal bidding strategy of the WPP while fulfilling a required 

CLRA. Additionally, Table 1 briefly provides the readers with the advantages of the proposed method over the methods 

presented in the literature in the context of the WPP’s bidding strategy. 

    Particularly, in this paper, firstly the remuneration and penalty mechanism of the applied JERM model while 

satisfying the interest of system operators and the WPP is detailed. The model is formulated as a bi-objective two-

stage chance-constrained stochastic framework, where the first objective is to obtain the optimal bids of WPP in the 

different day-ahead market floors, while the second one is to ensure the desired real-time CLRA. Additionally, the 

absolute reserve power procurement strategy is adapted in the model to make sure that the obtained decisions of the 

BTCS framework are practical with respect to the wind turbine control scheme. Therefore, the obtained efficient Pareto 

front provides WPP with a powerful tool to participate in JERM. To do so, a plausible set of system frequency and 

hourly wind speed (provided by forecasting tools) are considered as uncertain variables in the model. It should be 

noted that generating a set of discrete scenarios, based on the available information, for simulating the uncertainties of 

the influencing parameters of the model, e.g. wind speed, price, in the stochastic programming is regularly practiced 

in power system applications [26, 27]. Then, the effectiveness of the proposed approach is properly evaluated through 

an extensive out-of-sample analysis containing three wind turbulence intensity levels with a high resolution, i.e. 0.1 
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Hz, along with the real-time system frequency data. Furthermore, the obtained results are also compared with the 

results of the state of the art methods to show the effectiveness of the proposed framework. Finally, the impact of 

market incentives on WPP’s risk attitude and biding strategy is detailed.  

    The organization of the paper is as follows. In Section 2, the JERM framework is presented. The optimal offering 

strategy for the participation of WPP in JERM is detailed in Section 3. In Section 4, the ex-post analysis methodology 

is described. Numerical results are provided in Section 5 so as to evaluate and discuss the effectiveness and flexibility 

of the proposed approach. A discussion regarding the advantages and limitations of the proposed framework with 

respect to the state-of-the-art method is given in Section 6. Finally, Section 7 concludes the paper. 

 

Table 1. advantages of the proposed strategy over the methods presented in the literature regarding WPP’s bidding strategy 

 

References Participation in 

energy market 

Participation in 

reserve market 

Control technology 

of wind turbine 

Integrating uncertainty 

of system frequency 

Consideration of 

reserve reliability 

[12]-[18] ✓     

[19] ✓ ✓    

[20-21] ✓ ✓ ✓   

[Proposed] ✓ ✓ ✓ ✓ ✓ 

 

2. Proposed Market Framework 

 

In the proposed framework, WPPs are considered as BRPs and are thus able to contribute to the jointly cleared day-

ahead energy and reserve market. Therefore, WPPs could submit two separate bids, PRo and PEo, regarding respectively 

the reserve and energy markets for each period t of the following day. The deviations from the day-ahead scheduled 

bids are compensated by an imbalance settlement mechanism. Indeed, the quantity of energy fed in the system by a 

BRP may likely deviate from its nominated bid due to the inherent uncertainties in power generation. Therefore, the 

TSO applies an imbalance pricing mechanism to ensure the real-time demand-supply balance at the system level. To 

do so, the deviating BRP is expected to purchase its generation deficit and sell its generation surplus at the energy 

imbalance price. The imbalance pricing scheme varies between markets [28]. In this paper, we consider an imbalance 

settlement mechanism in which BRPs are discouraged to deviate from the contracted bids by means of a dual pricing. 

The net revenue of the BRP regarding the day-ahead energy market and imbalance settlement, Π𝐸, versus the injected 

power to the network, PE, in this scheme is graphically shown in Fig. 1. As seen in this figure, the BRP receives a 

defined revenue with respect to the offered energy bid and day-ahead energy market price, Eo. However, real-time 

over-generation is remunerated to the committed unit at a lower price, B, with respect to Eo. Likewise, the BRP 

should purchase the deficit of generation at a higher price, B.  

 

  
Fig. 1. Revenue obtained at the day-ahead energy and imbalance settlement versus delivered power (plain black line). 

     

    The reserve market enables the TSO to rely on power resources in order to resolve a potential system imbalance or 

contingency, thus ensuring systems security and stability. Therefore, producers can offer the required power-related 

commodities to the TSO in this market. The reserve market services are categorized by their response time and duration 

[29]. In this paper, the focus is around the FCR which requires the provision of power reserves in less than 30 seconds. 

𝑃𝐸𝑜 𝑃𝐸[MW]

 𝐸𝑜

  ↓

 𝐸𝑜𝑃𝐸𝑜

  [€]

  ↑
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The producers who offer FCR are remunerated based on the offered power in the day-ahead reserve market. However, 

depending on market rules, they can also get additional energy based revenue for real-time activation of FCR [30]. 

When it is not the case, markets should accommodate such additional energy payment in their policies, so as to 

incentivize WPPs to actively participate in the reserve market. 

    The required real-time percentage of the FCR, , which is automatically activated by the TSO in a decentralized 

way, is a function of the system frequency deviation f.  In this regard, when a deviation is within the dead-band, |f| 

≤ 0.01 Hz, the system is considered to operate normally and no FCR service is activated. However, a specific 

percentage of FCR is activated for 0.01≤|f| ≤ 0.2 as a linear function of f.  Then, the full power is activated for |f| 

> 0.2. This relationship between the FCR activation and the system frequency deviation is illustrated in Fig. 2. It should 

be noted that positive frequency deviations indicates a surplus of generation and thus a down-regulation requirement, 

whereas negative f requires the activation of upward regulation.  

 
Fig. 2. Percentage of FCR activation with respect to frequency deviation f. 

 

    Concurrently, a screening scheme exists to verify the real-time availability of FCR, and penalizes the reserve 

providers which fail to provide the offered capacity. Accordingly, two penalty prices are considered in the proposed 

JERM structure in order to meritoriously remunerate the committed providers.  

    In the day-ahead stage, the FCR provider is paid for the offered quantity, PRo (MW) at the cleared reserve market 

price, Ro (€/MW/h). However, at the balancing stage, the real-time deviations from PRo, is penalized by a specified 

price which is considered to be equal to Ro is this study. Moreover, when the reserve provider fails to provide the 

required FCR, the unit pays an additional penalty. This adaptive mechanism ensures that the FCR provider yields no 

advantage regarding the activated FCR in terms of energy when it fails in the availability check. The net revenue of 

WPP in the reserve market, 𝛱𝑅, versus the available power capacity, PR , in this mechanism is illustrated in Fig. 3. In 

this figure, the dotted blue line shows the income for the real-time reserve procurement. It is seen that for PR ≥ PRo, the 

committed unit receives a constant expected revenue regarding the day-ahead offer. However, the lack of reserve power 

availability leads to a loss of revenue in real-time. Moreover, as shown by the dotted red line, the participant obtains a 

constant revenue of a PRo when it passes the availability check in real-time for reserve activation. In contrast, when 

PR < PRo, the committed unit is penalized at a higher price factor a PRo. Finally, the total revenue of WPP in real-

time is obtained by adding both remuneration strategies as shown by the plain black line. 

 

 

Fig. 3. Representation of the different revenues from the FCR, i.e., procurement revenue as a function of the offered FCR bid (blue), activation 

revenue as a function of the percentage of called reserve  (Red), and total revenue in the reserve market as a function of the delivered FCR 

(black). 

𝑃𝑅𝑜 𝑃𝑅[MW]

 𝑎↑𝜃 𝑃
𝑅𝑜

  𝑎↓𝜃 𝑃
𝑅𝑜

 𝑅𝑜𝑃𝑅𝑜

𝑃𝑅𝑜( 𝑅𝑜   𝑎↓𝜃) 

𝛱𝑅[€]

 𝑅𝑜

 

 % 
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3. Offering strategy of wind power producers 

    The proposed BTCS framework takes advantages of a multi-objective programming  approach to simultaneously 

optimize WPP’s profit and CLRA in the JERM.  The idea behind the presented framework is illustrated in Fig. 4. As 

seen in this figure, WPP’s profit and confidence level of reserve power availability is modeled as a stochastic model, 

in which system frequency and wind speed uncertainties appear as the inputs of profit maximization problem while 

the maximization of CLRA only required wind speed uncertainty as the input. Finally, the bi-objective optimization 

programming allows us to illustrate the impact of the risk threshold, defined by the TSO, on WPP’s revenue. The 

details and formulation of each objective and the applied MOP approach are further elaborated in the following 

subsections, i.e. III.A-C. 

 
Fig. 4. Proposed bi-objective two-stage stochastic chance-constrained framework for profit maximization of WPP with respect to risk thresholds 

3.A. Objective functions and problem constraints 

   The first objective function  of the proposed MOP problem aims to maximize WPP’s profit in a two-stage stochastic 

programming framework, in which the first and second stages respectively represent the day-ahead and real-time 

market floors. The objective function is formulated as follows: 

Max
Η,Ψ

 Π = {Π𝐸𝑜  Π𝑅𝑜}  {
∑ 𝜋𝜔(Π𝜔

𝐸↑

𝜔∈𝛺
 Π𝜔

𝐸↓

 Π𝜔
𝑎↑  Π𝜔

𝑎↓  Π𝜔
𝑅↓)

} (1) 

    The  terms Π𝐸𝑜 and Π𝑅𝑜 respectively represent the revenue of the WPP in the day-ahead energy and reserve markets, 

and are given by: 

ΠEo =  𝐸𝑜∆𝑡𝑃𝐸𝑜   (2) 

ΠRo =  𝑅𝑜𝑃𝑅𝑜  (3) 

    Then, the effect of real-time deviations from the contracted day-ahead bids on WPP’s revenue is taken into account 

by the second term of (1). In that regard, 𝜋𝜔 is the probability of occurrence of scenario 𝜔 ∈ 𝛺. The energy imbalance 

settlement is represented by Π𝜔
𝐸↑ and Π𝜔

𝐸↓, which respectively indicate the financial compensation regarding real-time 

surplus and deficit of generation in scenario 𝜔. The mathematical expression of the energy imbalance settlement, as 

described in Section 2 and illustrated in Fig.1, is as follows:   
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Π𝜔
𝐸↑ =   ↑∆𝑡 Δ𝑃𝜔

𝐸↑   (4) 

Π𝜔
𝐸↓ =   ↓∆𝑡 Δ𝑃𝜔

𝐸↓ (5) 

where Δ𝑃𝜔
𝐸↑  and Δ𝑃𝜔

𝐸↓ are respectively the positive and negative power imbalances with respect to the day-ahead 

energy market bid of scenario 𝜔.  

   The last 3 elements in (1) represent the real-time balancing stage in which  Π𝜔
𝑎↑ and Π𝜔

𝑎↓ respectively indicate 

payment and penalty for reserve activation, while Π𝜔
𝑅↓ deals for the penalty for unavailability of the FCR in scenario 

𝜔. The mentioned elements for a given 𝜃𝜔 , as explained in Section 2 and shown in Fig.2-3, are formulated as follows: 

Π𝜔
𝑎↑ =  𝑎↑∆𝑡𝜃𝜔𝜉𝜔

↑  (6) 

Π𝜔
𝑎↓ =  𝑎↓∆𝑡𝜃𝜔𝜉𝜔

↓  (7) 

Π𝜔
𝑅↓ =  𝑅↓∆𝑃𝜔

𝑅 (8) 

where 𝜉𝜔
↑  and 𝜉𝜔

↓  are conditional decision variables, which are equal to 𝑃𝑅𝑜 regarding the real-time availability and 

unavailability of the scheduled reserve power, respectively.  Also, ∆𝑃𝜔
𝑅 indicate the negative deviation of the available 

reserve power 𝑃𝜔
𝑅 from 𝑃𝑅𝑜 in scenario 𝜔.  

It should be noted that the model is only considering the provision of upward reserve regulation since WPP is not able 

to benefit from fuel-saving return in downward regulation (like the conventional units do) [19,20]. 

The constraints associated with the first objective function (1) are as follows: 

𝑃𝐸𝑜  𝑃𝑅𝑜 = 𝑃𝑞𝑜 (9) 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑞𝑜 ≤ 𝑃𝑚𝑎𝑥 (10) 

𝑃𝐸𝑜  𝑃𝜔
𝐸 = ∆𝑃𝜔

𝐸↓  ∆𝑃𝜔
𝐸↑ (11) 

𝑃𝜔
𝐸  𝑃𝜔

𝑅 = 𝑃𝜔
𝑞
 (12) 

𝑃𝜔
𝑅 ≤ 𝑃𝑅𝑜 (13) 

𝑃𝜔
𝑅 ≤ 𝑃𝜔

𝑞
 (14) 

𝑃𝜔
𝑅 ≥ 𝑃𝑅𝑜  𝑀(1  𝜇𝜔) (15) 

𝑃𝜔
𝑅 ≥ 𝑃𝜔

𝑞
 𝑀𝜇𝜔 (16) 

𝑃𝑅𝑜  𝑃𝜔
𝑅 ≤ ∆𝑃𝜔

𝑅 (17) 

𝑚(1  𝛿𝜔) ≤ ∆𝑃𝜔
𝑅 ≤ 𝑀(1  𝛿𝜔) (18) 

𝜉𝜔
↓ ≤ 𝑃𝑚𝑎𝑥(1  𝛿𝜔) (19) 

𝜉𝜔
↓ ≤ 𝑃𝑅𝑜 (20) 

𝜉𝜔
↓ ≥ 𝑃𝑅𝑜   𝑃𝑚𝑎𝑥𝛿𝜔 (21) 

𝜉𝜔
↑ ≤ 𝑃𝑚𝑎𝑥𝛿𝜔 (22) 

𝜉𝜔
↑ ≤ 𝑃𝑅𝑜 (23) 

𝜉𝜔
↑ ≥ 𝑃𝑅𝑜    𝑃𝑚𝑎𝑥(1  𝛿𝜔) (24) 

where 𝑃𝑞𝑜 is the total bid of the WPP at the day-ahead stage for energy and reserve market which is limited by (9) and 

(10). The power mismatch in scenario 𝜔 is obtained by the power balance equation in (11), where 𝑃𝜔
𝐸  is the power fed 

in the network regarding scenario 𝜔. Equation (12) ensures that the allocated power in the energy and reserve market 

does not exceed the total available power 𝑃𝜔
𝑞
 of scenario 𝜔. Constraints (13)-(16) indicate the absolute control strategy 

of the WPP, where 𝜇𝜔 is a binary decision variable. In this strategy, a fixed amount of reserve power is allocated to 

the reserve market providing that sufficient power is available, i.e. 𝜇𝜔 = 1. However, when the available power, 𝑃𝜔
𝑞
, 
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is lower than 𝑃𝑅𝑜, the power is fully allocated to the reserve market, i.e. 𝜇𝜔 = 0, such that 𝑃𝜔
𝑅 = min (𝑃𝑅𝑜 , 𝑃𝜔

𝑞
). The 

negative deviation of the allocated FCR from its analogous day-ahead bid is obtained by (17). The status of ∆𝑃𝜔
𝑅   is 

expressed by (18), where 𝛿𝜔 ∈  {0,1} is equal to 0 in case of negative deviation (∆𝑃𝜔
𝑅 > 0), and equal to 1 when no 

deviation from the contracted reserve power bid exists (∆𝑃𝜔
𝑅 = 0). It should be noted that m and M are respectively the 

minimum and maximum bounds of the decision variable.  Constraints (19)-(21) let the conditional decision variable 

𝜉𝜔
↓  to be equal to 𝑃𝑅𝑜 so as to calculate the penalty for reserve activation failure, provided that a negative deviation 

between the contracted and allocated FCR exist, i.e. if ∆𝑃𝜔
𝑅 > 0 then 𝜉𝜔

↓ = 𝑃𝑅𝑜. However, constraints (18)-(20) assign 

𝜉𝜔
↑  to 𝑃𝑅𝑜 when ∆𝑃𝜔

𝑅 = 0, so as to calculate the real-time reserve activation revenue of scenario 𝜔 . It should be also 

noted that the first stage decision variables, Η = {𝑃𝐸𝑜 , 𝑃𝑅𝑜  , 𝑃𝑞𝑜}, and the second stage variables including 

{𝑃𝜔
𝐸 , ∆𝑃𝜔

𝐸↓, ∆𝑃𝜔
𝐸↑, 𝑃𝜔

𝑅 , ∆𝑃𝜔
𝑅 , 𝜉𝜔

↓  , 𝜉𝜔
↓ } ∈ Ψ  are non-negative continuous . Additionally, {𝜇𝜔, 𝛿𝜔} ∈ Ψ   are binary decision 

variables of the second stage. Moreover, 𝑃𝜔
𝑞
 and 𝜃𝜔 are the uncertainty sources respectively related to the available 

power and system frequency in scenario 𝜔. In the same fashion as [12], [18-21], it is assumed that the generation of 

WPP is sufficiently low in comparison with the generation at the system level, such that it is not affecting market prices 

(so-called price-taker assumption).  Owing to certainty equivalent theory since all prices enter linearly in (1) and WPP 

is a price taker, the uncertainties of market prices are substituted by their expected value [20]. Additionally, it allows 

us to better concentrate on the risk behavior of the WPP regarding the offered power quantities in the market. 

The presented objective function in (1), along with the constraints (9)-(24), define the two-stage stochastic optimization 

problem aiming to maximize WPP’s profit in the JERM. 

Then, the second objective of the proposed BTCS problem, which maximizes CLRA is formulated as follows: 

Max
Η,Ψ

 Φ = ℙ(∆𝑃𝜔
𝑅 = 0,𝜔 ∈ Ω ) (25) 

𝑃𝑚𝑖𝑛 ≤ 𝑃𝑅𝑜 ≤ 𝑃𝑚𝑎𝑥 (26) 

𝑃𝜔
𝑅 ≤ 𝑃𝑅𝑜 (27) 

𝑃𝜔
𝑅 ≤ 𝑃𝜔

𝑞
 (28) 

𝑃𝜔
𝑅 ≥ 𝑃𝑅𝑜  𝑀(1  𝜇𝜔) (29) 

𝑃𝜔
𝑅 ≥ 𝑃𝜔

𝑞
 𝑀𝜇𝜔 (30) 

𝑃𝑅𝑜  𝑃𝜔
𝑅 ≤ ∆𝑃𝜔

𝑅 (31) 

∆𝑃𝜔
𝑅 ≥ 0 (32) 

The objective function of the CLRA problem, Φ, is presented in (25), where ℙ is a probability function that computes 

the probability of real-time reserve availability throughout the scenarios. Similar to Section 3.A, ,  𝑃𝑅𝑜 is the first stage 

decision variable regarding the day-ahead reserve power bid.  𝑃𝜔
𝑅  and ∆𝑃𝜔

𝑅 are the second stage decision variables, 

which respectively, correspond to the real-time allocated reserve power and violation of 𝑃𝜔
𝑅 from the contracted bid 

𝑃𝑅𝑜. Additionally, 𝜇𝜔 is a binary decision variable that is equal to 1 when sufficient power regarding the contracted 

reserve bid is available and 0 otherwise. Also, 𝑃𝑚𝑖𝑛 , 𝑃𝑚𝑎𝑥  are respectively, the lower and upper power production 

limits of the wind turbine. The uncertainty of the available wind power and percentage of the FCR activation 

concerning the system frequency in scenario 𝜔 are represented by 𝑃𝜔
𝑞
 and 𝜃𝜔, respectively. Constraints (26)-(32) 

guarantee that the obtained solution is in the feasible space of the problem. However, it should be noted that this single-

objective optimization problem does not have a unique solution in the feasible space since there is no gain to provide 

a likely high reserve power bid. To better illustrate this effect, let us consider a single scenario where 𝑃𝜔
𝑞

= 2.5 MW 

with the probability of 100%, and 0 ≤ 𝑃𝑅𝑜 ≤ 5 MW. As shown in Fig.5, the maximum value of Φ can be obtained 

through various decision variables, 𝑃𝑅𝑜 and 𝑃𝜔
𝑅 within the feasible solution space as shown by a blue line. 
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Fig. 5. Feasible solution space and objective function value of CLRA. 

3.B. Bi-objective optimization approach: 

In Multi-Objective Programming (MOP), instead of obtaining a single global optimum solution, as familiarized in 

single-objective problems, the concept of Pareto optimality is employed. Pareto optimality states that the performance 

of any objective function cannot be improved without negatively affecting the other objective functions, owing to the 

competing nature of objectives [31]. 

The weighted-sum and -constraint methods are the most predominant scalarization approaches among the other MOP 

methods in the literature of the power systems [32].  However, the -constraint method has some advantages over the 

weighted-sum approach, such as no need for normalization of the objective functions and controllability of the number 

of generated efficient solutions by simply adjusting a resolution parameter [32, 33]. Based on the ε-constraint 

formulation, one objective function is chosen as the main objective,  𝐹1(𝑥), and the other, e.g. 

 𝐹2(𝑥), is considered as inequality constraint. The generic formulation of such an approach for a bi-objective problem 

is as follows: 

 

Max 
x∈S

 𝐹1(𝑥)  
(33) 

𝑠. 𝑡.    𝐹2(𝑥) ≥ 𝑘 

where 𝑘 = 𝐹2𝑚𝑖𝑛  𝑘(𝐹2𝑀𝑎𝑥  𝐹2𝑚𝑖𝑛) 𝑄⁄ ; 𝑘 = 0,… , 𝑄  

where S is the feasible region of the MOP problem and k is a lower bound for 𝐹2(𝑥). Thus, by varying k in a range 

of minimum and maximum value of the second objective, i.e. F2min, F2Max, Q+1 sub-problems are produced. 

Accordingly, the optimal solution of each sub-problem corresponds to a Pareto solution. However, the sub-problems 

with an infeasible solution should be ignored in the process of MOP. Moreover, the obtained Pareto front may contain 

some dominated solutions, which should be filtered out from the optimal set.  

3.C. BTCS Framework: 

In order to plausibly investigate the effect of the risk threshold on the WPP’s profit and offered power quantities in the 

JERM, the problem is recast as a MOP. Accordingly, WPP’s profit (1) and the confidence level of reserve availability 

(35) are considered as the two competing objectives of the proposed MOP problem, i.e. Max 
x∈(9)−(24)

{(1), (35)}. It implies 

that the proposed BTCS framework concurrently maximizes the WPP’s profit in a two-stage stochastic environment 

while ensuring a sufficient CLRA. Accordingly, equation (1) is considered as the primary objective function of the -

constraint method, while the second objective (25), i.e. Φ, is treated as an inequality constraint. Additionally, the 

feasible space of the problem is defined by constraints (9)-(24). Also, the minimum and maximum bounds of Φ are 0 

and 1, respectively. It should be noted that constraints (26)-(32) can be discarded in the MOP approach as they either 

are redundant or not limiting the feasible space. The compact representation of the BTCS model is finally given by: 
Max
Η,Ψ

 Π 
(34) 

Constraints (9)-(20) 

𝑃𝜔
𝑞    [MW]

𝑃𝜔
𝑞 Φ = 0

  
   MW]
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Φ = ℙ(∆𝑃𝜔
𝑅 = 0,𝜔 ∈ Ω) 

Φ ≥ 𝑘 = 𝑘/𝑄     k=0,…,Q 

Furthermore, the primary objective function and the defined constraints (9)-(24) sufficiently limit the feasible space of 

the problem, thereby one decision set per CLRA is returned (as opposed to the earlier description through Fig. 5). 

The probabilistic constraint in (34), which controls the real-time provision of the committed reserve, can be expressed 

as a chance-constrained program, and thus approximated by various approaches such as second-order cone program if 

the distribution of random variables follows a Gaussian function [34]. When dealing with an unstructured distribution, 

sampling average approximation technique accompanied by mixed integer programming can be used to estimate (34) 

[35-37] as follows: 

Φ = ∑ 𝜋𝜔𝛿𝜔
𝜔∈𝛺

 
(35) 

Nevertheless, in chance-constrained programming, it is more common to measure the probability of constraint 

violation, i.e. risk, rather than its confidence level. Therefore, the last two constraints of (34) and (35) can be 

reformulated as follows: 

Φ̅ = 1  ∑ 𝜋𝜔𝛿𝜔
𝜔∈𝛺

 
(36) 

Φ̅ ≤ r𝑘 = 𝑘/𝑄     k=0,…,Q (37) 

where r𝑘 is the analogous parameter to that of  𝑘 and Φ̅ is the one’s complement of Φ, which indicates the optimal 

risk level regarding the tradeoff between competing objectives. 

It is worthwhile noting that the proposed framework considers a single time period. However, the model can be 

modified by new scenarios and market settings to obtain the optimal bids of the consecutive time steps.   

4. Ex-Post analysis  

In this Section, we evaluate the obtained solutions of the BTCS framework using the out-of-sample approach. To that 

end, a set of wind speed and system frequency signals with a resolution of   are employed so as to assess the actual 

revenue of the WPP. Therefore, the ex-post revenue of WPP regarding the reserve market participation including FCR 

procurement and activation payment along with the financial compensation in the balancing stage is described in 

Section 4.A. Furthermore, the ex-post revenue of WPP concerning the day-ahead energy market and the imbalance 

settlement is detailed in Section 4.B.  

4.A. Ex-post revenue of WPP in the reserve market 

In the proposed JERM market, the resolution of reserve power settlement at the balancing stage is considered to be 

 = 10 s. Therefore, the actual revenue of WPP for reserve procurement concerning day-ahead remuneration and real-

time settlement is obtained by: 

Π̃𝑡′,𝑤,𝑖
𝑅𝑜 = 𝑁−1 𝑅𝑜𝑃𝑖

𝑅𝑜[1  𝕀(𝑃𝑡′,𝑤 < 𝑃𝑖
𝑅𝑜)] (38) 

where Π̃𝑡′,𝑤,𝑖
𝑅𝑜  is the instantaneous revenue of WPP for Pareto optimal point i at time 𝑡′ for wind signal w. Then, 𝑃𝑖

𝑅𝑜 

corresponds to  optimal solution i within the Pareto front, while 𝑃𝑡′,𝑤 is the available power at instance 𝑡′ for wind 
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signal w. 𝕀 is the indicator function that is equal to 1 when the operand in the parenthesis is satisfied and 0 otherwise. 

N is the number of intervals within one hour with respect to the defined resolution of the reserve market, i.e. N = 360. 

Subsequently, real-time remuneration and settlement for reserve power activation depend on system frequency. Hence, 

the percentage of the called reserve as described in Fig.2 should be calculated for each instance regarding the frequency 

samples.  

Π̃𝑡′,(𝑤,𝑓),𝑖
𝑎 = 𝑁−1𝜃𝑡′,𝑓𝑃𝑖

𝑅𝑜[ 𝑎↑   𝑎↓𝕀(𝑃𝑡′,(𝑤,𝑓) < 𝑃𝑖
𝑅𝑜)] (39) 

where Π̃𝑡′,(𝑤,𝑓),𝑖
𝑎  is the actual instantaneous reserve activation revenue of WPP in which 𝜃𝑡′,𝑓 is the percentage of the 

called reserve at instance 𝑡′ for frequency signal f.  

The total actual revenue of WPP in the reserve market, Π̃𝑅, can be assessed using (38) and (39) for each Pareto point, 

i.e. risk level. It should be noted that in an ideal situation, the obtained revenue should match its corresponding expected 

value obtained by BTCS model, i.e.  Π𝑅𝑜  ∑ 𝜋𝜔(Π𝜔
𝑎↑  Π𝜔

𝑎↓  Π𝜔
𝑅↓)𝜔∈𝛺 . 

4.B. Ex-post revenue of WPP in the energy market 

The real-time energy imbalance should also be settled in the same fashion as explained in Section 2. In this paper, it is 

assumed that the BRP submits its nomination at the end of the day-ahead market with a quarter-hour resolution, 𝜏′ =

1 4⁄  h. Consequently, an asymmetric imbalance tariff is imposed for BRPs who violate their nominations. Moreover, 

nominations of the WPP in this problem for the all intervals within one hour day-ahead market time unit is considered 

to be 𝜏′𝑃𝑖
𝐸𝑜, since WPP only injects power to the network with no off-takes. Therefore, the fed-in energy to the system 

for each imbalance settlement interval is obtained by: 

𝐸𝜏𝑗
′ ,𝑤 = ∫ 𝑃̃𝑡,𝑤𝑑𝑡

𝑡𝑗+1

𝑡𝑗

 (40) 

where 𝑃̃𝑡,𝑤 is the real-time available power injected into the network, considering the wind turbine de-rating mode,  

and 𝑡𝑗 , ∀𝑗∈{0,… ,3} defines the  boundary of each  time interval 𝜏𝑗
′ of the imbalance settlement process. 𝐸𝜏𝑗

′ ,𝑤 is the 

available energy of wind signal w at imbalance settlement interval 𝜏𝑗
′.  

The actual net revenue of WPP resulting from the day-ahead and imbalance settlement, 𝛱𝜏𝑗
′ , 𝑤, 𝑖

𝐸
, regarding each time 

interval 𝜏𝑗
′, wind signal w and Pareto solution i is obtained as follows: 

𝛱𝜏𝑗
′ , 𝑤, 𝑖

𝐸 =  
𝐸𝑜

𝜏𝑗
′𝑃𝑖

𝐸𝑜   
𝐵↑

(𝐸𝑇𝑗,𝑤
 𝜏𝑗

′𝑃𝑖
𝐸𝑜

) 𝕀 (𝐸𝑇𝑗,𝑤
≥ 𝜏𝑗

′𝑃𝑖
𝐸𝑜

)

  
𝐵↓

(𝜏𝑗
′𝑃𝑖

𝐸𝑜  𝐸𝑇𝑗,𝑤
)𝕀 (𝐸𝑇𝑗,𝑤

< 𝜏𝑗
′𝑃𝑖

𝐸𝑜
) 

(41) 

Finally, for each Pareto point, i.e. risk level, the total ex-post hourly revenue of WPP regarding the day-ahead energy 

and imbalance settlement stage, Π̃𝐸, can be obtained using (41) which should be Π𝐸𝑜  ∑ 𝜋𝜔(Π𝜔
𝐸↑  Π𝜔

𝐸↓)𝜔∈𝛺  in an 

ideal condition.  

5. Numerical results 
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In this Section the performance of the proposed BTCS bidding strategy is verified using a 5.3 MW wind turbine with 

a cut-in, rated, and cut-out wind speeds of 3, 12, and 25 m/s for participation in the JERM. In that regard, the in-sample 

and out-of-sample results of the proposed bidding strategy are discussed and compared to the classical bidding strategy 

method in Section 5.A and 5.B, respectively. Moreover, the impact of market incentives on the WPP’s revenue and 

risk attitude for the base case is evaluated through 4 additional cases in Section 5.C. The prices and penalties associated 

with the presented market for the base case are shown in Table 2.  

Table 2.  Prices and penalties in the JERM for the base case. 

Eo 

[€/MWh] 

Ro 

[€/MW] 

B 

[€/MWh] 

B 

[€/MWh] 

a 

[€/MWh] 

a 

[€/MWh] 

R 

[€/MW] 

33 36 30 40 40 60 36 

5.A. In-sample analysis 

The stochastic process of the wind speed is simulated using the ARMA scenarios generation method.  To do so, firstly 

a set of hourly mean wind speed data, available in [38], is fed into the ARMA model so as to obtain its associated 

statistical parameters. Then, a set of 1000 wind speed scenarios, covering the interval between the day-ahead market 

gate closure and the first hour of the next day, is produced by means of the estimated model. However, these numerous 

scenarios should appropriately be reduced, while keeping a reasonable approximation of the original distribution, in 

order to be practically tractable in the optimization process. Accordingly, a set of 20 wind speed scenarios, i.e. 

representing a sub-set of the most plausible scenarios in the original set, are collected through a scenario reduction 

technique based on Kantorovich distance. In this method, one scenario is chosen per iteration such that the Kantorovich 

distance of the main and reduced set is minimized. The iteration stops when the size of the plausible subset reaches a 

predetermined number. Subsequently, the selected hourly wind speed scenarios are converted to power scenarios using 

the static power curve of the wind turbine. Additionally, a set of 9 system frequency scenarios is also selected in the 

same manner so as to model the percentage of FCR activation as a stochastic process. The details of both scenario 

generation and reduction techniques used in this paper can be found in [39].  

    Both aforementioned stochastic sources along with the JERM tariffs are applied to the BTCS framework in order to 

obtain the optimal Pareto set. Meanwhile, a fine resolution over rk is selected so as to reach a dense grid in the -

constraint method, thereby sufficiently covering the entire Pareto front. Moreover, the weakly and strongly dominated 

solutions are filtered out in order to achieve a Pareto front that merely holds the efficient solutions. The proposed 

BTSC model is executed in Julia/JuMP [40] in 10.68 seconds on a MacBook Pro hardware set with Intel Corei5 CPU 

2.3 GHz. 

    The resulting decisions of the BTCS framework for the first stage variables with respect to the risk of inability to 

provide the contracted reserve power are shown in Fig. 6. In this figure, the horizontal axis is the expected probability 

of inability to provide the contracted reserve, Φ̅, while the vertical axis represents the scheduled power at each market 

floor. It can be seen that when the risk level, Φ̅, is between  0, 0.3], WPP bids a fixed quantity of power in the JERM. 

As expected, when the risk level rises, WPP submits a higher power quantity in the market (and it faces thus more 

imbalance penalties). Likewise, risky strategies lead to a prominent share of the available power that is committed to 

the reserve market while a lower portion is allocated to the energy market, reflecting that bidding in the reserve market 

is more advantageous than in the energy market (in the studied market conditions). To get a better insight, the penalty 

paid by the WPP as a function of the risk threshold is shown in Fig. 7. It can be seen that the induced penalty regarding 

the reserve market monotonically increases with respect to the risk level. 

The obtained in-sample revenue of the WPP using the proposed BTCS framework is illustrated in Fig. 8. It can be 

observed that the expected revenue of WPP in the reserve market (dotted blue line) is monotonically improving with 

respect to the permitted risk level, while the expected revenue stream of the energy market (plain red line) exhibits the 
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opposite trend. This observation is aligned with the allocated power bids at market floors which are shown in Fig.6. 

Remarkably, for risk level above 0.3, WPP still gathers revenue for its energy imbalance in real-time while not 

submitting any bid to the day-ahead energy market. The entire expected revenue of WPP for competing in the JERM 

is shown in Fig.9 on a Pareto-efficient front in which the total expected revenue of WPP steadily grows with regard to 

risk levels. Accordingly, the proposed BTCS model appears to afford the WPP with a flexible tool to strategically bid 

in the JERM with respect to the allowed level of risk. 

 

Fig. 6. First stage decision variables of the BTCS model regarding 

different risk levels for the base case, 𝑃𝑖
𝑅𝑜 (dotted blue line), 𝑃𝑖

𝐸𝑜 

(plain red line), and 𝑃𝑖
𝑞𝑜

 (dashed black line) 

 
Fig. 7. The penalty paid by WPP in the reserve market with respect to 

the inability to provide the contracted reserve bid for the base case 

  

 

Fig.8. The expected revenue of WPP at energy (plain red line)  

and reserve market (dotted blue line) for the base case 

 
Fig. 9. The total expected revenue of WPP for participating in the 

JERM for the base case versus  risk levels. 

 

5.B. Ex-post analysis 

As mentioned earlier, the stochastic process of intra-hour wind speed variations is approximated by an hourly mean 

wind speed scenario generation routine in the day-ahead decision-making process.  This assumption arises from the 

fact that most wind speed forecasters concentrate on an hourly resolution which is thus readily accessible for WPPs. 

Therefore, in order to demonstrate the impact of real-time intra-hour wind speed variations on WPP’s actual revenue, 

using the proposed BTCS tool, an extensive out-of-sample validation is performed. Accordingly, three sets of wind 

speed signals, embodying different TIL, i.e. 10%, 30%, and 50%, are initially produced using [41]. Each set carries 50 

wind speed signals with a resolution of 0.1 Hz on a one-hour span. Furthermore, another set of system frequency 

realizations, with an equal dimension, is captured by employing real-world frequency deviation data available in [38]. 

Therefore, regarding each TIL 2500 samples are generated so as to evaluate the obtained results of the BTCS 

framework. 

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

S
u
b

m
it
te

d
 P

o
w

e
r 

B
id

s
 [
 M

W
 ]

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5
74

75

76

77

78

79

80

81

THIS IS THE ACCEPTED MANUSCRIPT. The layout may differ from the published version.



15 

 

    In this case, the classical bidding strategy approach [19-21], provides the WPP with the optimal bids of 𝑃𝐸𝑜 = 0 

and 𝑃𝑅𝑜 = 2.375  MW], and revenue of 80.97 €. However, such a bid demonstrates a high-risk of unavailability in ex-

post, which is equal to 0.585, 0.585, 0.569 regarding the TILs of 10%, 30, 50%, respectively. Therefore, the offered 

bids may even deteriorate the system’s security of supply as the TSO generally considers high reliability for the reserve 

services.  

The ex-post revenue of WPP regarding playing in the reserve and energy market, based on the obtained decisions of 

the BTCS model, is respectively shown in Fig.10 and Fig.11. In these figures, the blue, green, and red styled lines 

respectively correspond to the TIL of 10%, 30%, and 50% while the related expected in-sample revenue is shown by 

a plain black line. It can be seen that for each TIL, the ex-post revenue resulting from the energy and reserve market 

has the same trend as its associated expected in-sample term. Nevertheless, the actual revenue of WPP in the reserve 

market is higher than its related expected value for a low TIL, i.e. 10%. In other words, the in-sample BTCS model 

overestimates the uncertainty around intra-hour wind speed fluctuations for this case, which results into conservative 

decisions. Conversely, for 30% TIL, the actual reserve market revenue is slightly below the expected term, while TIL 

of 50% is considerably lower than the expected in-sample revenue due to the inability of the WPP to offer the scheduled 

reserves. 

    More interestingly, compared to the reserve market, the real-time revenue of WPP in the energy market has an 

inverse behavior with respect to the increase of turbulence intensity. This aspect stems from the fact that a high 

turbulent wind yields more energy when the operating point of the wind turbine is in the convex region of the power 

curve [42-43]. Nevertheless, turbulence has a positive correlation with the fatigue of the wind turbine components 

[44], (thereby leading to an increase in maintenance costs) and power loss (due to the wake effect) [45].  However, it 

should be noticed that the static power curve of the turbine, used in this study, merely maps the mean wind speed to 

mean output power, and thus disregards the dynamics involved in the wind characteristics nor the turbine. In that 

respect, the WPP should incorporate wind turbine dynamic model in order to better assess the captured output power 

and component fatigue regarding the turbulent characteristics of the wind.  

    As seen in Fig. 11, for a low TIL, i.e. 10%, the actual revenue of WPP in the energy market is lower than the expected 

in-sample one while the one computed for turbulence level of 30% is really close to the expected in-sample revenue. 

It is also interesting to observe that the obtained revenue for a high TIL of 50% can even be higher than the expected 

one.  

 

Fig.10. The Expected revenue of WPP in the reserve market (black 

line) and its related actual revenue for TIL of 10% (dotted blue line), 

30% (dashed green line), and 50% (red dash-dotted line) in the base 

case.  

 

Fig.11. The Expected revenue of WPP in the energy market (black line) 

and its related actual revenue for TIL of 10% (dotted blue line), 30% 

(dashed green line), and 50% (red dash-dotted line) in the base case. 
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In other words, WPP may compensate for some loss of revenue by leveraging the additional available energy in 

turbulent wind. However, the loss of revenue in the reserve market is more substantial than the gain of revenue in the 

energy market concerning the increase of turbulence. As shown in Fig 12, the total real-time revenue of WPP in the 

JERM concerning the expected revenue declines by the increase of turbulence level. 

 
Fig.12. The overall expected revenue of WPP in the JERM 

(black line) and its related actual term for TIL of 10% (dotted blue line), 

30% (dashed green line), and 50% (red dash-dotted line). 

 

To gain insight into this matter, the deviation of actual revenue streams from their expected in-sample values for the 

different TIL is normalized by the total expected revenue of the same Pareto point. The results are detailed in Table 3. 

It can be seen that ∆Π̃𝑛
𝑅%, normalized revenue deviation of the reserve market, is between [-0.152, 12.601] for 10% 

TIL, [-5.118, -0.399] for TIL of 30% and finally [-13.137, -1.485] for 50% TIL. Moreover, ∆Π̃𝑛
𝐸% , normalized revenue 

deviation of the energy market, for TIL of 10%, 30% and 50% is in range of [-13.313, -0.947], [-0.758, 1.438] and 

[0.091, 8.015], respectively. It can be observed that when the risk level increases, the actual revenue term is getting 

farther from the total expected term.  Additionally, ∆Π̃𝑛%, i.e. resulting from both markets, for TIL of 10%, 30%, and 

50% is in the range of [-1.328, -0.346], [ -4.134, -1.501], and [ -5.590, -1.394]. It is interesting to see that the wide 

range of ∆Π̃𝑛
𝐸% and ∆Π̃𝑛

𝑅% is shrunk compared to the normalized total revenue deviation ∆Π̃𝑛%. It means that even 

though the model cannot fairly assess the specific revenue of each market floor with respect to the turbulence and high-

risk levels, it is still able to sufficiently estimate the entire revenue of the WPP in the JERM with an acceptable range.  

 
Table. 3.  Normalized deviation of each revenue stream regarding different TIL for the base case 

 

 ∆Π̃𝑛% ∆Π̃𝑛
𝐸% ∆Π̃𝑛

𝑅% 

 TIL 

Φ̅ 

10% 30% 50% 10% 30% 50% 10% 30% 50% 

0.000 -1.099 -1.157 -1.394 -0.947 -0.758 0.091 -0.152 -0.399 -1.485 

0.037 -1.228 -1.501 -2.089 -1.375 -0.543 1.553 0.147 -0.958 -3.641 

0.099 -1.241 -2.055 -3.054 -2.664 -0.478 3.079 1.423 -1.577 -6.133 

0.197 -1.260 -3.001 -4.283 -5.069 -0.260 4.556 3.809 -2.741 -8.839 

0.215 -1.163 -3.192 -4.543 -5.923 -0.201 4.930 4.760 -2.990 -9.473 

0.298 -1.328 -4.080 -5.524 -8.419 -0.240 5.547 7.091 -3.840 -11.071 

0.343 -0.836 -4.134 -5.590 -10.027 0.355 6.556 9.192 -4.489 -12.146 

0.393 -0.414 -4.017 -5.470 -11.464 0.773 7.251 11.051 -4.791 -12.721 

0.444 -0.346 -3.946 -5.330 -12.690 1.172 7.807 12.344 -5.118 -13.137 

0.529 -0.712 -3.668 -4.890 -13.313 1.438 8.015 12.601 -5.106 -12.905 
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The obtained results of the BTCS framework regarding the second objective function, Φ̅ , is reported in the first column 

of Table 4, which corresponds to the defined risk threshold by the TSO. Additionally, the out-of-sample analysis 

regarding the real-time inability of FCR procurement for TILs of 10%, 30, 50% , Φ̃̅TIL% , are detailed in the 2nd, 3rd and 

4th columns of this Table. It is observed that the actual risk level associated with the inability to procure reserve power 

for 10% TIL,  Φ̃̅10% , is lower than the expected risk metrics, for Φ̅ < 0.529,  while greater for a high TIL, i.e. 30% 

and 50%. Moreover, it should be noted that setting a high-risk threshold for reserve provision by the TSO, i.e. higher 

than 0.5, is unrealistic, as these products should be highly reliable. Additionally, it should be further remarked that for 

Φ̅ = 0.529, Φ̃̅10% and Φ̃̅30% is slightly higher than the case of 50% TIL.  This is evident since its associated reserve 

power bid is equal to the deterministic value of power scenarios, i.e. slightly (3%) higher than the mean power of the 

generated wind signals. In other words, in turbulent wind, the possibility of reaching this rather high power-bid is 

higher than wind with a low TIL. Nevertheless, the actual revenue of WPP regarding this bid is still much lower than 

the case of 10% and 30% TIL because the deviation term ∆𝑃𝜔
𝑅 in (8) is more significant in a higher turbulent wind.   

Table. 4. The real-time inability of reserve power deployment as a risk metrics concerning different TIL for the base case. 

𝚽̅  𝚽̃̅𝟏𝟎%  𝚽̃̅𝟑𝟎%  𝚽̃̅𝟓𝟎%  

0.000 0.000 0.033 0.134 

0.037 0.000 0.083 0.201 

0.099 0.001 0.183 0.316 

0.197 0.014 0.294 0.399 

0.215 0.022 0.316 0.414 

0.298 0.063 0.373 0.446 

0.343 0.132 0.423 0.476 

0.393 0.220 0.467 0.500 

0.444 0.363 0.518 0.529 

0.529 0.585 0.585 0.569 

5.C. Impact of market incentives on WPP’s revenue and risk attitude 

In order to investigate the impact of market incentives on the WPP’s revenue and its risk attitude, 4 cases regarding 

different market prices and penalties are presented. In each case, a specific incentive factor in the reserve market is 

changed while the other incentives remain unchanged as reported in Table 2. The variability of the total revenue as a 

function of the risk threshold is shown in Fig. 13(a)-(d). Also, similar to the base case, as discussed in Section 5.A-B, 

the associated expected in-sample revenue is shown by a plain black line and the ex-post revenue concerning the TIL 

of 10%, 30% and 50% are respectively represented by blue, green and red styled lines.   

    

    In case 1, the day-ahead reserve procurement price, Ro, is increased to 39 [€/MW] in order to investigate the effect of 

such variation on WPP’s risk attitude and associated revenue. The single-objective solution, i.e. neglecting the risk 

threshold, of this case yields the expected revenue of 92.49 € regarding the optimal offered bids of 𝑃𝐸𝑜 = 0 and 𝑃𝑅𝑜 =

5.08  MW] in the JERM. Remarkably, as the WPP does not meet any risk threshold in biding strategy, the ex-post 

analysis shows that, for all TILs, the WPP is never able to provide the offered capacity bid throughout the market 

period, i.e. Φ̃̅10% = Φ̃̅30% = Φ̃̅30% = 1.   

    On the other hand, when using the BTCS model, this favorable incentive allows the WPP to withstand a higher risk 

regarding the inability to provide the offered FCR service, compared to the base case, as illustrated in Fig. 13(a). As 

seen in this figure, the ex-post revenue of the WPP for 10% TIL stays suitably close to the in-sample results, whereas 
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highly diverges from the expected revenue for higher TILs, i.e. 30% and 50%. Moreover, as shown in Table 5, for 

10% TIL, the actual risk level, obtained by out-of-sample analysis, regarding the inability to procure the offered FCR 

is lower than the expected risk level for Φ̅ < 0.529. It means that, when the defined risk threshold, indicated by the 

TSO, is higher than 0.529, WPP may not be able to meet this requirement in real-time. However, defining such a high-

risk threshold for reserve procurement by the TSO is unrealistic as these services should be highly reliable. The real-

time risk level, obtained by ex-post analysis, for high TIL, i.e. 30% and 50%, are detailed in the third and fourth 

columns of Table 5.   

 

    In the second case, the reserve activation price, a , concerning the real-time energy deployment is augmented to 

88 [€/MWh]. In this configuration, when neglecting the risk index (single-objective problem), despite WPP submits the 

same bids as the base case, i.e. 𝑃𝐸𝑜 = 0 and 𝑃𝑅𝑜 = 2.375  MW] , it expects an increased revenue of 82.61 € compared 

to the base case, 80.97 €. However, such bids demonstrate a high-risk of unavailability in ex-post, which is equal to 

0.585, 0.585, 0.569 regarding the TILs of 10%, 30, 50%, respectively. Nevertheless, when incorporating the allowed 

risk threshold in the bidding strategy, WPP is able to obtain the optimal bids with respect to the defined risk threshold 

to improve its revenue in the JERM, as shown in Fig. 13(b). As seen in this figure, the ex-post revenue of the WPP 

closely follows its expected term for TIL of 10% while further deviates for higher TILs.  Moreover, as shown in Table 

6, apart from the case when the allowed risk is impractically high, Φ̅ = 0.529, the real-time FCR unavailability is 

below the expected threshold defined by the TSO for 10% TIL. Also, the real-time risk level, obtained by ex-post 

analysis, for high TILs, i.e. 30% and 50%, are detailed in the third and fourth columns in Table 6.   

 

    In case 3, the penalty regarding the deviation of the available capacity from the offered one, R , is increased to 

39[€/MW], so as to study the effect of such negative incentive in WPP’s revenue and risk behavior. The outcomes of the 

single-objective problem for such a penalty setting shows that the revenue of the WPP compared to the related solution 

of the base case decreases (79.50 € versus 80.97 €). More importantly, the risk of procuring such a bid is 0.363, 0.518 

and 0.529 for TILs of 10%, 30% and 50%, respectively. Although, when applying the risk measure in the bidding 

strategy, such negative incentive, firstly, entails the WPP’s decisions not to exceed a risk of unavailability higher than 

0.444.  Additionally, as shown in Table 7, for 10% TIL, the ex-post risk of inability to procure the offered bid is lower 

than the one defined by the TSO. Moreover, the out-of-sample revenue of the WPP for this situation is close to the 

expected term as indicated in Fig. 13(c). It can also be seen in the same figure and Table that the ex-post revenue and 

risk measure gets farther from the expected values regarding higher TILs.   

 

    In case 4, the reserve activation penalty rate,  a, is increased to 88[€/MWh], so as to study the effect of this negative 

market incentive on WPP’s behavior in the JERM. It should be noted that, when merely considering the WPP’s profit 

as the objective function and disregarding the risk threshold, WPP’s optimal revenue is 79.91 € which is lower than 

the revenue obtained by the base case.  Also, the out-of-sample analysis shows that the real-time unavailability of such 

a bid is 0.363, 0.518 and 0.529 for TIL of 10%, 30% and 50%, respectively. Moreover, when integrating the risk level 

threshold in the model, the interaction of market incentives, do not allow the WPP to take any decision riskier than 

0.444, as seen in Fig. 13(d). Also, it can be seen in Fig. 13 that the ex-post revenue of the WPP for 10% TIL is 

acceptably close to the expected term. Additionally, as detailed in Table 8, the real-time unavailability of the contracted 

FCR is less than the expected one (defined by the TSO). However, evidently, when the TIL increases, the ex-post 

revenue deviates further from the expected revenue and the WPP is not able to meet the indicated risk threshold.  
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Fig. 13(a)-(d). The impact of reserve market incentives on the risk-taking attitude and WPP’s revenue including in-sample and ex-post analysis for 

TILs of 10%, 30% and 50%, (a) day-ahead reserve procurement price is set to 39, (b) reserve activation price is set to 88, (c) penalty regarding the 
deviation of the available capacity from the offered one is set to 39, (d) reserve activation penalty rate is set to 88. 

 

Table. 5. The real-time inability of reserve power deployment as a risk 
metrics concerning different TIL for case 1. 

 

𝚽̅  𝚽̃̅𝟏𝟎%  𝚽̃̅𝟑𝟎%  𝚽̃̅𝟓𝟎%  

0.000 0.000 0.033 0.134 

0.037 0.000 0.083 0.201 

0.099 0.001 0.183 0.316 

0.197 0.014 0.294 0.399 

0.243 0.022 0.316 0.414 

0.296 0.063 0.373 0.446 

0.343 0.132 0.423 0.476 

0.393 0.220 0.467 0.500 

0.444 0.363 0.518 0.529 

0.529 0.585 0.585 0.569 

0.645 0.709 0.625 0.593 

0.697 0.867 0.689 0.629 

0.746 0.950 0.742 0.665 

0.790 0.983 0.786 0.692 

0.836 0.997 0.843 0.740 

0.934 1.000 1.000 1.000 
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Table 6. The real-time inability of reserve power deployment as a risk metrics 

concerning different TIL for case 2. 

 

𝚽̅  𝚽̃̅𝟏𝟎%  𝚽̃̅𝟑𝟎%  𝚽̃̅𝟓𝟎%  

0.000 0.000 0.033 0.134 

0.037 0.000 0.083 0.201 

0.099 0.001 0.183 0.316 

0.197 0.014 0.294 0.399 

0.243 0.022 0.316 0.414 

0.262 0.063 0.373 0.446 

0.343 0.132 0.423 0.476 

0.385 0.220 0.467 0.500 

0.444 0.363 0.518 0.529 

0.529 0.585 0.585 0.569 

 
Table 7. The real-time inability of reserve power deployment as a risk metrics 
concerning different TIL for case 3. 

 

𝚽̅  𝚽̃̅𝟏𝟎%  𝚽̃̅𝟑𝟎%  𝚽̃̅𝟓𝟎%  

0.000 0.000 0.033 0.134 

0.037 0.000 0.083 0.201 

0.099 0.001 0.183 0.316 

0.197 0.014 0.294 0.399 

0.243 0.022 0.316 0.414 

0.278 0.063 0.373 0.446 

0.343 0.132 0.423 0.476 

0.393 0.220 0.467 0.500 

0.444 0.363 0.518 0.529 

 
Table 8. The real-time inability of reserve power deployment as a risk metrics 

concerning different TIL for case 4. 

 

𝚽̅  𝚽̃̅𝟏𝟎%  𝚽̃̅𝟑𝟎%  𝚽̃̅𝟓𝟎%  

0.000 0.000 0.033 0.134 

0.037 0.000 0.083 0.201 

0.099 0.001 0.183 0.316 

0.198 0.014 0.294 0.399 

0.215 0.022 0.316 0.414 

0.262 0.063 0.373 0.446 

0.343 0.132 0.423 0.476 

0.385 0.220 0.467 0.500 

0.444 0.363 0.518 0.529 

   

  Accordingly, the variation of market incentives, including the prices and penalties, directly affect the obtained 

revenue of the WPP. More interestingly, the interaction of these incentives defines the maximum tolerable risk 

regarding reserve unavailability. In particular, when the penalty rates associated with the reserve market increases, the 
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maximum tolerable risk decrease whereas the increases in the reserve market prices allow the WPP to take a riskier 

decision regarding maximization of its profit. Therefore, the market incentives alone cannot limit the risk attitude of 

the WPP. However, by integrating the risk threshold definition in the biding strategy framework, WPP can maximize 

its profit while respecting the defined risk threshold.  

6. Discussion 

The current advancements in electricity market regulations and control mechanisms of wind turbines motivate wind 

power producers to participate in the joint energy and reserve market. As shown in the results Section, the classical 

offering strategy of WPP in the market, which is merely based on the market incentives [19-21], does not ensure a firm 

reliability level. In other words, WPP offers power quantities such that the income resulting from the positive incentives 

are greater than the negative ones. Also, the TSO is not informed about the confidence level of the contracted bid 

which deteriorates the system security. Therefore, their intermittent nature is a great concern of the TSO to consider 

them as a reserve provider, since these services are expected to be highly reliable (as conventional units). Nevertheless, 

regarding the advantages of the probabilistic reserve procurement metrics [22-25], discussed in Section 1, the TSO can 

define a risk threshold for the participation of WPP in JERM. In this way, WPP integrates the indicated risk threshold 

in its bidding strategy algorithm so as to maximize its profit while respecting market polices. The proposed BTCS 

framework illustrates the potential benefits of WPP’s profit improvement while respecting a large range of confidence 

level which can be imposed by the TSO. It should be noted that future research should consider the dynamics of wind 

turbines while evaluating the expected results in ex-post. Moreover, with the increase of wind farm size in the near 

future, WPP could act as a price-maker, thus affecting market prices by their offered bids. Therefore, integrating market 

price uncertainty and performing a global sensitivity analysis based on market incentives should be considered. Finally, 

the scenario generation approach used in current studies which are based on hourly forecast should be improved using 

shorter time step (minute or even, ideally, 1- second) wind speed forecast tools so as to better assess the fluctuations 

of wind speed.  

7. Conclusion 

In this paper, firstly, a market framework, which incentivizes the wind power producer to participate in the day-ahead 

energy and reserve market so as to maximize its profit, is described. In this market setting, the transmission system 

operator also benefits by enhancing system security due to the appropriate penalty settings in the balancing stage, while 

specifying a new risk metric for the real-time unavailability of the scheduled reserve bids. Consequently, an advanced 

bidding strategy for the participation of the wind power producer in this market, considering practical constraints of 

wind turbine and market rules, is proposed.  Then, an extensive out-of-sample validation regarding different turbulence 

intensity level is performed ex-post to verify the validity of the obtained results.  It is shown that, in contrast with 

traditional models, the obtained results of the proposed bidding strategy ensure the availability of the offered bid as a 

probabilistic risk metric and improve the producer’s revenue in the market, thereby they could practically be considered 

as a reserve provider. On the other hand, the risk of unavailability of the reserve power in classical approach could 

increase to 100%, depending on market incentives, thus threatening system’s security of supply. Additionally, it is 

seen that with the increase of turbulence intensity level, the actual revenue of the wind power producer gets farther 

from the expected value. However, the deviation is still acceptable, i.e. around -5%. Nevertheless, the dynamic 

characteristics of the wind turbines and turbulent wind as well as intra-hour wind speed fluctuations are among the 

important aspects of the bidding strategy that should properly be addressed in future research works. Moreover, 

introducing the chance-constrained problem in the multi-objective optimization context could open up new avenues of 

research to apply more efficient approaches in order to obtain a higher computation efficacy and quality of the efficient 

frontier.  
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