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Abstract—This paper is focused on the day-ahead prediction
of the onshore wind generation. This information is indeed
published each day, ahead of the market clearing, by European
Transmission System Operators (TSOs) to help market actors in
their scheduling strategy. In that regard, our first objective is to
efficiently capture the complex temporal dynamics of the wind
power using recurrent neural networks. To that end, advanced
architectures of Long Short Term Memory (LSTM) networks are
implemented and compared. Secondly, in order to continuously
improve the prediction accuracy, different techniques for recal-
ibrating the model during its practical utilization are analyzed.
This procedure consists in adjusting the parameters of the neural
networks by taking advantage of the new information revealed
at each time step, without the (time-consuming) need to retrain
the model from scratch over the whole available dataset. Finally,
the financial impact for the system operator due to the wind
prediction error is estimated. Outcomes from the Belgian case
study show that an optimal model recalibration can significantly
improve the quality of the forecasts, thereby decreasing the
balancing costs of the system.

Index Terms—Deep Learning, Electricity Markets, Bidirec-
tional Decoder, LSTM Neural Networks, Recalibration Forecast

I. INTRODUCTION

The liberalization of the electricity sector has introduced
new prerogatives for the Transmission System Operators
(TSOs), among which the task of facilitating the access to the
market for all actors. In that regard, TSOs must provide various
information to all market participants such as the real-time
evolution of the system balance or the anticipated onshore and
off-shore wind generation. With the current decarbonization of
the electricity sector, the increased contribution of weather-
dependent (and thus, uncertain and intermittent) renewable
generation has made this forecasting task very important for
ensuring a cost-effective system operation.

Many researches have thereby introduced new techniques
for wind prediction. Firstly, statistical approaches based on
the inference (from observed data) of basic statistics such as
the mean, variance and autocorrelation have emerged [1], [2].
However, the underlying assumptions often involve that such
forecasters rely on simple linear models which are not able
to capture the nonlinear characteristics (such as the different
ramp rates) of the wind. In parallel, physical models were
also developed, but they necessitate a complex mathematical
description of the environment, which is computationally in-
tensive, and often based on arbitrary simplifying assumptions
[3]. To address these issues, machine learning (data-driven)

approaches have recently been tested by the prediction com-
munity, and have progressively exhibited better performances
than classical methods [4]-[6]. This trend is mainly driven
by the ability of data-driven approaches to accurately capture
and represent hidden characteristics of complex variables,
without the need to arbitrarily define the model complexity.
Specifically, neural networks are powerful tools whose flexible
nature can be tailored to the characteristics of the forecasting
problem, thereby improving their accuracy. Particularly, this
property has led to the advent of recurrent neural networks
(RNNs), advanced deep learning structures that are specifically
designed to propagate through time relevant information from
past observed data (by relying on a dynamic memory). In this
way, such recurrent networks have shown a high potential in
processing times series data such as wind generation.

However, one of the main challenges that still needs to
be properly studied relates to the recalibration of the model.
Indeed, once the forecaster is trained (using historical obser-
vations), it is then used for actual field operation (on new
data), but the model is usually not updated with the new
information that is revealed at each time step. In [7], the
models are re-estimated from scratch (using all the historical
database) on a daily basis but at the expense of a continuous
utilization of large computational resources. In this work,
we aim at improving this naı̈ve approach by retraining the
existing forecaster at optimal time intervals (e.g. every day,
week, etc.) with a sliding window that includes the relevant
set of past observations. The idea is to identify whether it
may be beneficial to generate a slight bias in the model (by
dynamically over-fitting to recent conditions) rather than to
rely on a single static model that performs well in average
along the year but that is suboptimal for each of its constituting
sub-periods. Overall, the contributions of the work can be
summarized as follows.

Firstly, we exploit the flexible nature of neural networks by
implementing three different recurrent architectures, based on
Long Short Term Memory (LSTM) cells [8]. The objective
is to predict (at 11:00 a.m. in day-ahead) the expected wind
generation for the 24 hours of the next day. The three
models, i.e. (i) the encoder, (ii) the decoder, and (iii) the
bidirectional decoder differ in the way they capture space-
time dependencies, which affects their predictive capabilities.
In that regard, their accuracy is not only compared to state-of-
the-art techniques (such as ensemble methods), but also with
the predictions performed and published by the TSO.
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Secondly, the development of a recalibration procedure is
developed. This process allows to adjust the parameters of the
neural networks by taking advantage of the new information
continuously revealed over time (during the actual daily uti-
lization of the forecaster), without the time-consuming need
to retrain the model over all the historical data set.

Thirdly, the financial impact of prediction errors (on both
the TSO and wind producers) is estimated. To that end, the
balancing costs required to compensate the wind imbalances
are computed based on (publicly available) market data.

The paper is organized as follows. In Section II, we develop
different LSTM architectures to capture the dynamical behav-
ior of wind generation, and we discuss several strategies for
recalibrating the model over time. Section III focuses on the
prediction accuracy of the models, which are compared with
outcomes from TSO and state-of-the-art methods. The best
model is then selected, and incorporated into the recalibration
policy, which allows to significantly improve the quality of
the predictions. Section IV finally evaluates the financial gain
of reducing the forecasting error incurred by the forecasting
error (by saving the balancing costs). Finally, in Section V,
conclusions and perspectives are exposed.

II. METHODOLOGY

This section is divided into two parts. Firstly, different
LSTM-based architectures of recurrent neural networks are
presented (Section II.A). Secondly, the methodology to iden-
tify the best recalibration policy is discussed (section II.B).

A. Development of LSTM-based forecasting tools

This work focuses on neural networks, which are flexible
tools (theoretically able to learn any complex nonlinear func-
tions) that combine multiple advantages. In that regard, the
complexity of the model can be tailored to the complexity of
the task (thereby avoiding both under- and over-fitting issues),
and the architecture can be adapted to the specificities of the
problem. Given that wind generation is an inherently dynamic
process, we consider recurrent networks (Fig. 1), which are
purposely tailored to process temporal dependencies.
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Fig. 1. General representation of recurrent neural networks (RNN) with
cyclical connections that act as a dynamical memory (a), i.e. the network
is unrolled though time to seamlessly represent time dependencies (b).

The general principle of recurrent neural networks (RNN) is
to generate the prediction yt based on the input information xt,
for each time step t ∈ T of the prediction horizon of interest.
Based on N historical data, the RNN is trained to minimize
the error between its output yt and actual observation dt.

The RNN is made up of different stacked layers, each one
composed of multiple neurons, which overall define the model
complexity. The recurrent architecture is also characterized by
cyclical links, connecting the state of the neurons among con-
secutive time steps, thereby propagating information through
time. This property is illustrated in Fig. 1 where it is observed
that the prediction a time t depends on both input variables at
time t and the information from previous time steps.

In recent years, RNN applications have been very successful
for a variety of problems such as speech recognition, language
modelling and translation, etc [9]. However, RNNs are known
to struggle in capturing long-term dependencies, such that
relevant information arising from longer term periodicities
(such as seasonal effects) can be lost. To address this issue,
LSTM neurons were developed, and rely on gating units that
regulate the flow of information that is propagated through
time. The principle of LSTM cells is depicted in Fig. 2.
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Fig. 2. Single-cell LSTM memory block c (pertaining to layer l at time t).

In Fig. 2, we observe that the LSTM cell c at layer l at
time step t is fed by three different contributions, i.e. hl−1

t the
output vector (of all LSTM cells) of the layer below at the
same time, hl

t−1 the output vector (of all LSTM cells) of the
same layer at the previous time step, and Cl

c,t−1 the state of
the cell c at the previous time step (which acts as a dynamical
memory). Overall, the LSTM neuron is composed of 3 gated
units (input, output and forget gates) and the LSTM layer l is
thus characterized by the following composite function:

flt = σ
(
Wf hl−1

t + Wf hl
t−1 + bf

)
(1)

ilt = σ
(
Wi hl−1

t + Wi hl
t−1 + bi

)
(2)

Cl
t = flt Cl

t−1 + it tanh
(
Wc hl−1

t + Wc hl
t−1 + bc

)
(3)

olt = σ
(
Wo hl−1

t + Wo hl
t−1 + bo

)
(4)

hl
t = ot tanh(Cl

t) (5)

where σ is the logistic sigmoid function, and it , ft and ot
are the activation vectors of the input, forget and output gates
respectively, whereas Ct stands for the cell activation vector.
The weight matrices W• (i.e. links between LSTM neurons)
and the bias vectors b• are the parameters of the network that
need to be optimized during the learning procedure.
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In this work, three different LSTM-based architectures,
which differ by the way they process temporal information,
will be developed and compared, i.e. (i) the encoder, (ii) the
decoder, and (iii) the bidirectional decoder.

The encoder is a topology tailored to sequentially process
the past information, and to generate the predictions at the
end of the input sequence. The issue with this architecture
consists thus in feeding the network with the available (known
or estimated) information about the future. Such information
typically comes from numerical weather forecasts that can
provide estimation of the future temperature, cloud cover or
wind characteristics, and it is thereby essential to properly
include these features as input data for the prediction model.
In the encoder, it is done by providing those data at the last
time step of the input sequence, which may not be optimal.
This architecture is shown in Fig. 3
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Fig. 3. General representation of the encoder architecture.

Another option for incorporating the temporal information
is to rely on a decoder, which generates a prediction at each
time step of the horizon. This design, which is represented in
Fig. 4, is traditionally used for on-line tasks (such as sequence
generation), and is thus is not well suited to take advantage of
past information. Indeed, these data need to be incorporated
at the first time step of the decoder, which may thus struggle
to properly extract the relevant information from both short-
and long-range past features.
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Fig. 4. General representation of the decoder architecture.

To improve on both encoder and decoder architectures, a
third topology, the bidirectional decoder, is investigated. This
design aims at optimally exploiting (at each time step of the
prediction horizon) the complete information about the whole
horizon. For instance, for the prediction at time t, the network
is not only fed by the past information (by exploiting the
traditional recurrent connections) but also by the available
future data (such as the estimation of weather variables at
next time steps). The underlying idea is that the available
information at time t + k (e.g. through weather forecasts)
can help explaining what will happen at time t. As we can
see in Fig. 5, the bidirectional decoder is composed of two
different recurrent neural networks, which are connected to
the same output layer (providing the predictions of interest).

The resulting topology processes (simultaneously) the input
sequence forwards and backwards, thereby leveraging the
whole contextual information.

Forward layer

Backward layer

RNN

RNN

x0

y0

RNN

RNN

x1

y1

RNN

RNN

x2

y2

RNN

RNN

xT

yT

...

...

Fig. 5. General representation of the bidirectional decoder

B. Recalibration strategy

When the same prediction model is used each day (in a static
manner), two problems inevitably arise. Firstly, the model does
not take advantage of the new information that continuously
becomes available over time (and that can be used to improve
the accuracy of the data-driven model). Secondly, the model
may be good in average, but not optimal for each sub-period
of the year. To address both these issues, a recalibration of the
model is investigated, where the model can be slightly biased
to new data (e.g. the inner dynamics of the model will differ
between winter and summer months).

In practice, when identifying the best recalibration strategy,
two questions need to be answered :

• what is the frequency at which the model needs to be
calibrated, i.e. the optimal number of days p between
two calibrations ?

• what is the size of the sliding window, i.e. the number
of days r whose information is exploited to adjust the
parameters of the forecaster ?

To identify the best values of r and p, a design of experi-
ments is carried out in Section III.C, by assuming that r ≥ p.

In parallel, for determining the extent to which the model
needs to be modified, three different strategies are investigated.
Firstly, an ideal (non-realistic) benchmark is considered, which
yields the best outcome that can be expected from the cali-
bration. To that end, the model is trained on the r past days,
but the p days to predict are used as validation set. In reality,
these days cannot be used as validation (since they are not yet
realized). In that way, we ensure that the model is calibrated
in such way that it will provide the best outcomes for the
days to predict. A second method selects the validation set
in a classical way (using 10% of the historical information),
so that the model is trained on the remaining 90% data, until
convergence is achieved on the validation set. The third model
is trained with a fixed number of epoch (i.e. we impose the
number of iteration of the gradient descent algorithm through
the training sequence of r days), so that no data are discarded
for the validation set.

III. CASE STUDY

In this work, we focus on the deterministic onshore wind
generation in Belgium. Our results can thus be compared with
those of the system operator (i.e. Elia), which publishes each
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day (at 11.00 a.m., i.e. 1 hour before the closure of the Day-
Ahead Market) its hourly forecasts in order to promote a more
competitive and transparent market. Indeed, a better prediction
will result in better information for the market players, hence
reducing the risks when participating in competitive electricity
markets. To compare our models on a fair basis, our predic-
tions are also carried out at 11.00 a.m. for the 24 hours of the
following day. Thus, the prediction horizon of interest ranges
from m = 13 to 37 hours into the future. The prediction tool
used by the TSO is not disclosed for confidentiality reasons.

A. Data pre-processing

The available dataset includes the onshore wind power
(aggregated at the Belgian level) for four years, starting from
2014 to the end of 2017. These four years are separated into
a training, a validation and a test set. The training set starts
on January 1, 2014, and ends on September 31, 2016, the
validation set is composed of the next three months, and the
year 2017 is used as test set.

The prediction tool is fed by input (explanatory) variables
of different types. Firstly, we use weather data (such as
temperature, cloud cover, etc.) that are expected for each
hours of the next day. This information typically comes from
advanced meteorological models. For this work, we add only
access to the data from a single station (located at the center
of the country). Secondly, the last measured values (typically
the previous 6 to 48 hours) of wind generation are highly
important to capture the dynamics of the variable, and are thus
provided to the models. Thirdly, temporal information (hours
of the day, day of the week and month of the year) is also used
to better capture multi-scale time characteristics [10]. Finally,
the installed capacity of wind generation is also exploited.

Before training the model, it is necessary to standardize
the data for two main reasons. First, different variables are
typically associated with different ranges, e.g. the scale of
temperature values (in ◦C) is naturally lower than the historical
wind generation (in MW) by several orders of magnitude.
However, it does not mean that the latter variables is that
much more important that the first one. Such differences will
lead to more difficulty in correctly adjusting the weights of
the neural network, resulting in poor outcomes and longer
simulation times. Secondly, the range of variables must be
adapted to the activation function of the LSTM. For instance,
the hyperbolic tangent in (3) and (5) reaches saturation when
the input is higher than 2. Feeding the network with higher
values thereby wipes off the processing power of the network.
The scaled variables Xscaled ∈ [0, 1] are computed as:

Xscaled =
X −Xmin

Xmax −Xmin
(6)

where Xmin and Xmax are the minimum and maximum values
of the database for each variable X .

B. Comparison with state-of-art approaches

In this part, we calculate the prediction accuracy (over the
test year 2017) for the three developed LSTM-based archi-
tectures, the encoder (Enc.), decoder (Dec.) and bidirectional

decoder (B.Dec.). The models are trained using the ”Adam”
optimization algorithm [11]. These models are compared to the
predictions published by the Belgian TSO, as well as to other
classical methods, i.e. the feedforward neural network (also
referred to as multilayer perceptron, or MLP), and XGBoost
[12]. In practice, Python 3.6.0 and the Keras library (with the
TensorFlow backend) has been used for implementing neural
networks, whereas the scikit-learn library has been employed
for XGBoost. The results are represented in Table I. The root
mean square error (RMSE) is used as error metric :

RMSE =

√√√√ 1

n

n∑
t=1

(yt − dt)2 (7)

with n = 8760 the number of predicted values (i.e. hourly
data over the 2017 test set), yt the output of the prediction
model and dt the actual measured value.

TABLE I
COMPARISON OF LSTM-BASED MODELS WITH OTHER METHODOLOGIES

Methodology MLP XGBoost Enc. Dec. B.Dec. TSO

RMSE (MW) 128 140 127 125 115 111

Interestingly, the bidirectional decoder (B.Dec) outperforms
other LSTM-based tools, which can be explained by its
tailored architecture that empowers traditional RNN by better
capturing temporal dependencies. Overall, all recurrent models
are more accurate than classical methods (MLP and XGBoost).
The optimal complexity of the bidirectional network is given
by a single hidden layer with 32 LSTM neurons in its two
constitutive forward and backward layers (Fig. 5). Moreover,
the best results were obtained by feeding the models with 2
days of historical wing generation.

Overall, those results are very promising since they are
closely challenging the performances of the TSO, which has
potentially access to more input features (such as several
meteorological stations in Belgium). Indeed our best model
(i.e. bidirectional decoder) has an error metric of 115 MW
while the TSO has an error of 111 MW (over the year 2017). In
the next sub-Section III.C, we will investigate (for the B.Dec.)
whether adjusting the model at regular intervals throughout the
test year can improve the prediction accuracy.

C. Performance of the recalibration

Firstly, we define the ideal benchmark for the (B.Dec)
model calibration. The results are shown in Table II, where
the calibration is performed in different conditions, i.e. for a
calibration performed every p days, using the information from
a number r of past days.

From Table II, we see that recalibrating the initial model
(RMSE of 115 MW) can significantly improve its accuracy
(to reach a RMSE of 100 MW), thereby surpassing the
performance of the TSO model. Outcomes show that the ideal
frequency for recalibrating the bidirectional decoder model is 7
days, with an historical database composed of the past 30 days.
These parameters will therefore be used in the rest of the paper
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TABLE II
ACCURACY OF DIFFERENT RECALIBRATION STRATEGIES

RMSE (MW)
r

1 day 7 days 30 days 90 days

p

1 day 102.76 102.06 101.64 104.22

7 days X 101.96 100.3 102.91

30 days X X 101.95 102.94

90 days X X X 105.5

(for other calibration methods). The value of these parameters
can be explained by the nature of the learning procedure.
Indeed, training the model on a lower number of days (on a
very regular basis) results in over-fitting the calibrated model
to these new observations (thereby loosing the generalization
capabilities of the prediction tool). On the other hand, when
the model is too rarely updated, we do not take advantage of
the beneficial effect of slightly adapting the model parameters
to the current conditions.

As a reminder, the stopping criterion of the ideal benchmark
is triggered by the performance on the days to predict, allowing
the model to perfectly overfit on these days.. It thereby yields
an upper bound of the gain that can be expected by the
recalibration. In actual field operation, these outcomes cannot
be achieved. Different practical methods are thus studied to
try achieving comparable performances.

In that regard, the most straightforward strategy consists in
relying on a conventional validation set (in a similar fashion
than the the one used to train the original model). This
approach allows to regularize the model, by avoiding that
the parameters are overly adapted to the training data (thus
reducing the generalization capacities of the prediction tool).
Unfortunately, this validation set decreases the amount of data
that can be used during the training phase, and we thus choose
a validation test containing 10% of the training set. Then, we
assess the impact of the position of the validation set within
the historical database. Practically, four cases are studied : (i)
the validation set is chosen at the beginning of the dataset
(older data), (ii) in the middle, (iii) at the end (more recent
data), and (iv) randomly within the whole training sequence.
However, this sensitivity analysis shows that modifying the
position of the validation set does not influence the accuracy
of the prediction (with a difference of at most 0.1 MW).

Another approach for calibrating the model is to bypass
the use of a validation set (that decreases the number of data
available to adapt the weights of the model) by considering
a fixed number of epochs (i.e. number of iterations of the
gradient descent algorithm). Finding the optimal number of
epochs is a challenging task since smaller values do not allow
to fully exploit the new revealed information, while large
values inevitably result in over-fitting issues. In the two cases,
we do not learn optimally. Fig. 6 shows the evolution of the
prediction error if we modify the number of epochs. A number
between 100 and 500 epochs is relatively stable and introduce
a RMSE close to 102 MW, which is very close to the optimal

value of the ideal benchmark. Evidently, it should be kept in
mind that retraining the model on a higher number of epochs
will inevitably increase the simulation time.
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Fig. 6. Evolution of the error regarding the number of epochs

Finally, these methods are compared with a more simple
(and time-consuming) methodology where the model is re-
trained from scratch every p = 7 days.

Monthly errors are summarized in Fig. 7, where we observe
that the ideal (non realistic) way for recalibrating the model
systematically improve the results (for all months of the
year). Then, we see that using a fixed number of epochs
(i.e. 250 in accordance with Fig.6) seems to be the best
strategy (outperforming all other approaches), and leads to
results close to the ideal benchmark. In this way, retraining
from scratch is not only computationally demanding, but also
less efficient than the proposed calibration method. Besides,
after recalibration, this optimal model (Epoch fixed) shows
higher accuracy than the model of the TSO.

In general, we can also note than the prediction error (quan-
tified through the RMSE) is slightly lower during summer
months. However, the winter period is the more critical in
terms of generation adequacy, and it is thus important to
have reliable information during that time. In that regard, it
is interesting to notice that our models are significantly better
than the TSO for these important months.

IV. FINANCIAL COSTS ARISING FROM FORECAST ERRORS

In this part, we evaluate the costs that can be saved from
recalibrating the wind generation forecaster. Indeed, in case of
real-time imbalance, the TSO restores the system frequency
by relying on (costly) operating reserves. Both downward
and upward reserves are needed to respectively compensate
excesses and shortages of wind power [13].

The costs associated with this balancing mechanism result
from two contributions, (i) the capacity allowance (e/MW/h)
that remunerates the procurement of power margins (that can
be activated by the TSO in case of need), and (ii) the actual
deployment of the requested energy (e/MWh). However, these
costs are supported by different actors. The TSO is responsible
to size and build the reserve capacity, and the resulting costs
(i) are transferred to the electricity bill of end-users [14]. The
reserve activation costs (ii), on the other hand, are supported by
market actors who are responsible for creating the imbalance.
In this way, by enhancing the forecast reliability, we decrease
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Fig. 7. Comparison of monthly evolution of each recalibration model

the (costly) reserve capacity to be contracted by the TSO.
Likewise, reducing the forecast error decreases the penalties
incurred to wind producers, thus boosting their profitability.

In this work, we assume that the real-time system imbalance
originates only from the wind forecast error (i.e. the dispatch
of other resources strictly follows their committed day-ahead
schedule, and the failures of network components are ne-
glected). In accordance with the current European legislation,
i.e. the System Operation Guidelines, we consider that the
TSO defines the minimum reserve capacity (required to main-
tain the balance in the control zone) with the goal of covering
the imbalances for at least 99% of the time, taking into
account historic imbalance observations [15]. Hence, based
on the distribution of wind forecast errors computed at each
of the 8760 hourly time step of the year 2017, we infer the
resulting need of both upward R+ and downward R− reserve
capacity (as depicted in Fig. 8). Once the sizing is determined,
considering an average price of 10 e/MW/h, the annual costs
(in e) can be computed according to (R+ +R−)*10*8760.

Fig. 8. Representation of the method for sizing the reserve capacity.

In this Fig. 8, the prediction error εt is defined as the
difference between the prediction yt and the actual value dt:

εt = yt − dt (8)

A positive error corresponds thus to overestimating the wind
production (such that upward reserves R+ are needed), while
a negative error underestimates the generation (resulting in
the activation of downward reserves R−). Table III provides
the results of the different forecasting models, i.e. the TSO
model (TSO), the static bidirectional decoder (Static), and its
recalibrated version with a validation set (Val.), from scratch
(Scratch), and with a fixed number of epochs (Epoch). Specif-
ically, we represent the need of upward R+ and downward

R− reserve capacity, and their associated costs C+
r and C−

r .
The total system costs are thus Cr = C+

r + C−
r .

TABLE III
ANNUAL BALANCING COSTS ASSOCIATED WITH EACH METHODOLOGY.

R+[MW] R−[MW] C+
r [Me] C−

r [Me] Cr[Me]

TSO -153.35 374.57 13.43 32.81 46.24

Static -265.49 318.72 23.26 27.92 51.18

Val. -326.16 262.84 28.57 23.02 51.83

Scratch -283.81 299.18 24.86 26.21 51.07

Epoch -291.88 255.11 25.57 22.35 47.92

We see that prediction errors can significantly differ between
tools. For instance, the TSO tends to strongly underestimate
the wind generation, leading to high costs C−

r for downward
capacity. For most of our models, the prediction errors tend to
be symmetrical (around zero), which is logical since positive
and negative errors are equally penalized into the learning pro-
cedure. However, we also observe that our LSTM-based model
(and their subsequent recalibrations) lead to heavy-tailed dis-
tributions of prediction errors in which large inaccuracies are
more frequently encountered. In that regard, even though our
models are more effective in general, they necessitate to rely
on higher balancing needs to cover 99% of the imbalance
situations. However, we observe that recalibrating the static
model decrease these costs by 3.26 Me, i.e. a reduction of
6.3%, which stresses again the added value of this re-training
phase. From these observations, an interesting perspective is
to modify the model training to further penalize large errors.

Then, the financial penalties incurred to wind producers
(due to the reserve activation) are computed. In general, these
activation costs increase with the severity of the imbalance
position, and vary with respect to the direction of the error
(Fig. 9). Two cases can occur. On the one hand, if the wind
producer generates less than expected (i.e. positive error εt),
upward reserve will be activated, and he will pay the resulting
activation price (which is higher than the price he has received
in the energy market). This penalty cost Λ+ is calculated by
(9). On the other hand, if the generation exceeds the forecasted
value (i.e. negative error εt), the producer will sell the surplus
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energy at the downward activation price (which is lower than
the price that he would have received in the energy market).
The resulting opportunity loss Λ− is calculated by (10):

Λ+ =

n∑
t=1

(λres+t − λDA
t ) · εt (9)

Λ− =

n∑
t=1

(λDA
t − λres−t ) · εt (10)

with λres+t and λres−t the upward and downward reserve
prices, and λDA

t the electricity price on the day-ahead market.

Fig. 9. Merit-order activation of reserves.

The total reserve activation costs over the year 2017 (for
each prediction tool) are computed using the actual offers
in the Belgian reserve market [16], and given in Table IV.
We see that all recalibration techniques allow to decrease the
costs of the static forecaster, up to a factor 2 for the model
calibrated with an optimal number of epochs. This impressive
gain is explained by the merit order effect (Fig. 9), in which
large deviations are more heavily penalized. Hence, even slight
improvements can significantly reduce the balancing fees. In
addition, we also observe that opportunity losses Λ− are much
higher than penalty costs Λ+, which arises from the fact that
the price spread between the energy price λDA

t and the price
for the generation surplus λres−t is usually much higher than
the difference between λDA

t and λres+t . Wind producers are
thus incentivized to overestimate their future generation (and
thus to pay the moderate penalty λres+t ) rather than to receive
the very low λres−t when they generate more than expected.

TABLE IV
ANNUAL ENERGY COSTS FOR WINDS PRODUCERS.

Λ+ [Me] Λ− [Me] Total costs [Me]

TSO 5.78 66.54 72.32

Static 13.13 78.28 91.41

Val. 19.09 30.05 49.14

Scratch 14.6 57.42 72.02

Epoch 17.82 27.29 45.11

In general, we conclude that relying on an (optimally-
calibrated) model allows to save 3.3 Me (for the reserve
capacity) and 45 Me (for the reserve activation) compared
with a static model.

V. CONCLUSION

This paper was devoted to the day-ahead prediction of
the onshore wind power generation. Firstly, we exploited the

flexible nature of recurrent neural networks to implement
different LSTM-based topologies, which all provided accu-
rate results in regards to other state-of-the-art approaches.
Secondly, we observed that recalibrating the model during
its actual utilization can strongly improve the accuracy of
predictions. In that regard, it appears that a recalibration with a
fixed (optimally-chosen) number of epochs is a very effective
solution compared to the traditional use of a validation set.
Finally, we quantified the financial impact of prediction errors
on both the TSO and wind producers. It was observed that, due
to the structure of the balancing costs, even small prediction
improvements can lead to substantial costs savings, thereby
paving the way to further research in wind forecasting.
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