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Abstract 
In light of the latest technological achievements in wind farm control, wind power producers (WPPs) are motivated to participate 
in the joint day-ahead energy and reserve market (JERM) so as to obtain additional revenue by offering ancillary services. 
However, their expected profit is potentially affected by fast fluctuations of the available wind power in real-time, which may 
prevent them to deliver the capacity offered at the day-ahead stage. In order to evaluate this impact, a stochastic framework 
aiming at maximizing the WPP’s profit in the day-ahead JERM, based on hourly mean wind power forecasts, is firstly 
developed.  Once the optimal bids are obtained, an empirical ex-post analysis is performed to assess the impact of actual wind 
speed fluctuations on the WPP’s profit. Accordingly, the resulting revenue streams from the different market floors are 
separately compared to their related expected values, so as to determine the losses regarding the inability of both reserve capacity 
procurement and activation as well as deviations from the scheduled energy. The outcomes confirm that wind speed fluctuations 
have a significant impact on the WPP’s ability to deliver the scheduled reserve, thus negatively impacting its actual profit. 

1    Introduction 
The uncertain nature of wind speed accompanied by a high 
level of wind power integration in electrical grids introduces 
new challenges for a secure and reliable operation of power 
systems [1]. New structures and rules are thus continuously 
emerging to accommodate the uncertain and fluctuating wind 
generation in the liberalized competitive framework. In this 
direction, various market floors such as day-ahead energy and 
reserve markets, which are complemented with a real-time 
balancing stage, are designed. In that context, similar to the 
other market participants, wind power producers (WPPs) are 
looking toward maximization of their profit through optimal 
bidding strategies in the different market floors [2].        
    In [3], by using a bivariate distribution of real-time market 
price and a wind power forecast error, an optimal offer-curve 
for a WPP taking part in the day-ahead energy market is drawn 
so as to maximize its profit. The optimal bidding strategy of 
WPPs using a bi-level stochastic model is investigated in [4], 
in which the authors also considered the operation of other 
energy sources in the real-time market. In [5], a bidding 
strategy is introduced so as to minimize the imbalance costs of 
WPPs in the real-time market, while wind power forecast error 
is presented as a stochastic parameter. In [6], in order to 
maximize the WPPs’ profit, a stochastic model is introduced 
to reduce deviations from the scheduled power. The authors 
reflected the uncertainties associated with wind power 
production and market fees in their model. 

    It should be noted that the aforementioned papers merely 
considered the participation of WPPs in the day-ahead energy 
market while minimizing the imbalance costs. However, 
thanks to new technological achievements in wind farm 
control and recent evolutions in the reserve markets, WPPs are 
potentially able to provide ancillary services such as frequency 
containment reserve (FCR) [7-9]. However, since wind power 
generation has nearly zero marginal cost, offering downward 
reserve regulation is not profitable for WPPs, in contrast to 
conventional power plants that leverages important fuel 
savings. Therefore, market policies should either allow 
provision of asymmetric services or involvement with an 
aggregator to promote WPPs to take part in the reserve market. 
    Several studies are conducted to consider the potential 
partaking of WPPs in the reserve market as well as the energy 
market [1,7-8]. For instance, a joint day-ahead energy and 
reserve market (JERM) model aiming to increase the WPPs' 
revenue is proposed in [1]. In this model, penalties regarding 
the under procurement of the reserve capacity are designed to 
be sufficiently low so as to avoid the risk of losing revenue in 
the reserve market. A stochastic model for profit maximization 
of a WPP playing in the JERM is presented in [7]. In [8], an 
analytical approach for the participation of WPP in JERM is 
presented, so as to optimize its expected profit. It is shown that 
the WPP participation in JERM follows a binary behaviour 
where it bids either in the reserve or energy market, depending 
on the market prices and penalty rates. 
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    It should be pointed out that the actual wind capacity 
available in real-time, accounting for inherent fast wind speed 
fluctuations, is not considered in these studies. Such models 
thereby fail to capture penalties arising from the WPP inability 
to deliver the capacity offered at the day-ahead stage, which 
may potentially lead to ex-post disappointment regarding the 
actual profit. 
    In this paper, we aim at properly evaluating this impact. To 
that end, we firstly formulate the day-ahead problem of a WPP 
targeting to maximize its profit in the JERM. Without loss of 
generality, in the same fashion as [3,6-8], the WPP is 
considered to be a price-taker in the electricity markets. It 
signifies that the power generated by the WPP has no effect on 
market prices, which is a reasonable assumption since the 
generation of a single WPP is dramatically smaller than the 
total generation at the system level. Thereafter, in order to 
investigate the impact of actual intra-period wind speed 
fluctuations on the obtained results, two different cases are 
considered. In the first one, we consider a single scenario that 
represents the actual perfect information of the mean wind 
power (over each time step of the daily optimization horizon). 
This case shows that, even if a WPP relies on perfect 
information on the averaged future wind conditions, the intra-
period wind fluctuations, which is considered to be 10 sec in 
this study, can negatively affect its revenues. The second case 
is modelled as a more realistic two-stage stochastic model, 
where wind speed uncertainties are represented through a set 
of scenarios. In the presented formulation, the WPP is not 
allowed to deviate from the contracted reserve capacity, thus 
leading to conservative strategies in the reserve market.       
    After obtaining the optimal bids in both aforementioned 
cases, an ex-post analysis is performed. The proposed ex-post 
analysis employs a set of 15-min synthetic wind speed signals 
with a 10-sec resolution as well as a set of real-world system 
frequency data (to represent the real-time activation of 
balancing reserves). The numerical analysis illustrates the 
consequences of intra-period wind speed fluctuations in 
providing the balancing reserve, as well as the resulting effects 
in the WPP’s expected inflows and losses. The revenue 
streams in the different market floors are individually 
compared to their associated expected terms. 
    The remaining part of the paper is outlined as follows. In 
section 2, the proposed stochastic model for the participation 
of WPP in JERM is presented.  Section 3 explains the proposed 
empirical ex-post analysis and assessment approach. In section 
4 the numerical results are detailed. Finally, the last section, 
concludes the paper with some guidelines for the participation 
of WPPs in the JERM. 
 

2    Model Description  
2.1 Electricity market structure 
Within the current electricity market structure, WPPs are able 
to participate as a balance responsible party (BRP) in the day-
ahead energy market and submit their bids. However, any 
imbalance (on a specific period) from the nominated bids is 
penalized by the transmission system operator (TSO). The 
imbalance settlement price mechanism varies in different 
market structures [10, 11]. In this paper, a two-price settlement 
scheme is considered, where positive and negative imbalances 

are penalized at different prices, with the goal of incentivizing 
agents to keep a perfect balance within their portfolio. In case 
of residual imbalance at the system level, the TSO activates 
the balancing offers purchased in the day-ahead reserve 
market.  
    The reserve market contains different services, which are 
classified in regards to their response speed. In this paper, we 
focus on the provision of frequency containment reserve 
(FCR), which is automatically activated in a decentralized way 
for quickly alleviating momentary frequency deviations. 
Depending on market policies, FCR can be remunerated in 
form of both power and energy [12]. In other words, these 
services are paid for the allocated capacity, while their actual 
activation is paid as an energy service. It should be noted that 
some markets only pay the FCR service for the availability of 
the power capacity. However, in order to promote renewable 
generation to take an active role in the reserve market, new 
policies may adapt to pay for the activated energy as well.  
2.2 Stochastic model formulation 
In this section, a stochastic framework is presented to assist 
WPPs to find the optimal trade-off between energy and reserve 
in JERM. The mathematical formulation of this problem is 
expressed as follows:  
Max: 
Ψ 

Π = 𝜆𝜆𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶∆𝑡𝑡 + 𝜆𝜆𝐶𝐶𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶 +  
� 𝜉𝜉𝜔𝜔�𝜆𝜆↑∆𝑃𝑃𝜔𝜔↑ − 𝜆𝜆↓∆𝑃𝑃𝜔𝜔↓ + 𝜆𝜆𝑅𝑅+𝜃𝜃𝜔𝜔𝑅𝑅�𝜔𝜔�

𝜔𝜔∈𝛺𝛺
∆𝑡𝑡 

(1) 

 
 
𝑃𝑃𝐶𝐶𝐶𝐶 + 𝑅𝑅𝐶𝐶𝐶𝐶 ≤  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚  (2) 
𝑃𝑃𝐶𝐶𝐶𝐶 + 𝑅𝑅𝐶𝐶𝐶𝐶 ≥  𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 (3) 
𝑃𝑃�𝜔𝜔 + 𝑅𝑅�𝜔𝜔 = Γ�𝜔𝜔                                          ∀𝜔𝜔 ∈ 𝛺𝛺                 (4) 
∆𝑃𝑃�𝜔𝜔 = 𝑃𝑃𝐶𝐶𝐶𝐶 − 𝑃𝑃�𝜔𝜔                                        ∀𝜔𝜔 ∈ 𝛺𝛺 (5) 
∆𝑃𝑃�𝜔𝜔 = ∆𝑃𝑃𝜔𝜔↓ − ∆𝑃𝑃𝜔𝜔↑                                      ∀𝜔𝜔 ∈ 𝛺𝛺 (6) 
𝑅𝑅𝐶𝐶𝐶𝐶 − 𝑅𝑅�𝜔𝜔 ≤ 0                                            ∀𝜔𝜔 ∈ 𝛺𝛺 (7) 
𝑃𝑃𝐶𝐶𝐶𝐶 ,𝑅𝑅𝐶𝐶𝐶𝐶 ,𝑃𝑃�𝜔𝜔,𝑅𝑅�𝜔𝜔,∆𝑃𝑃𝜔𝜔↑ ,∆P𝜔𝜔↓ ≥ 0              ∀𝜔𝜔 ∈ 𝛺𝛺 (8) 
where the objective function Π, presented in (1), consists of 2 
contributions for the first (day-ahead) stage and 3 terms for the 
second (real-time) stage.  The first term represents the income 
of the WPP in the day-ahead energy market. In that regard, 
𝜆𝜆𝐶𝐶𝐶𝐶 ,𝑃𝑃𝐶𝐶𝐶𝐶 ,∆𝑡𝑡 denote the day-ahead energy price, the contracted 
power and the imbalance period (in hour unit), respectively. 
The second term represents the income for procurement of the 
reserve capacity, which depends on the reserve capacity 
procurement price 𝜆𝜆𝐶𝐶𝐶𝐶, and the contracted reserve capacity 
𝑅𝑅𝐶𝐶𝐶𝐶. The real-time contributions are weighted by scenario 𝜔𝜔 ∈
𝛺𝛺, where 𝜉𝜉𝜔𝜔 is the probability of each scenario. The third and 
fourth terms indicate the imbalance settlement, where 𝜆𝜆↑ and 
𝜆𝜆↓ denote the imbalance price associated with a power surplus 
∆𝑃𝑃𝜔𝜔↑  and power deficit ∆𝑃𝑃𝜔𝜔↓  with respect to the day-ahead 
contract, respectively. The last term in (1) determines the 
payment of reserve power activation, where 𝜆𝜆𝑅𝑅+ and 𝜃𝜃𝜔𝜔 
represent the reserve activation price and the percentage of 
real-time reserve deployment 𝑅𝑅�𝜔𝜔, respectively (see section 
3.2).  
Constraints (2) and (3) guarantee that the total contracted bid 
in the energy and reserve markets is bounded by the physical 
generation limits of the wind farm. Constraint (4) entails the 
allocated power in the energy market 𝑃𝑃�𝜔𝜔 and the reserve 
market 𝑅𝑅�𝜔𝜔 to match the total available power Γ�𝜔𝜔 in each 
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scenario. Constraint (5) determines the total power deviation 
in each scenario ∆𝑃𝑃�𝜔𝜔. Constraint (6) allows ∆𝑃𝑃𝜔𝜔↓  to be the 
deficit of power in case of real-time generation shortage and 
∆𝑃𝑃𝜔𝜔↑  to be to the surplus of generation in case of over 
generation. Constraint (7) ensures that violation of the 
scheduled reserve (and its demanded activation) does not 
occur. Constraint (8) guarantees that the employed 
optimization variables, i.e. Ψ = �𝑃𝑃𝐶𝐶𝐶𝐶 ,𝑅𝑅𝐶𝐶𝐶𝐶 ,𝑃𝑃�𝜔𝜔,𝑅𝑅�𝜔𝜔,∆𝑃𝑃𝜔𝜔↑ ,∆P𝜔𝜔↓ �, 
are non-negative. The subscript ω in Ψ denotes the second 
stage decision variables. Additionally, the random 
variables 𝜃𝜃𝜔𝜔 and Γ�𝜔𝜔 introduce the uncertainties in the model. 
    It is worth noting that the expected values of market prices 
are substituted by their random distribution in this model.  Due 
to certainty equivalent theory, this assumption is valid as these 
prices enter linearly in the objective function and are not 
influenced by the WPP generation [8]. Moreover, the 
presented model (1)-(8) considers one imbalance settlement 
period for sake of simplicity and reducing the computational 
burden. Nonetheless, the information regarding market prices 
and scenarios could be dynamically updated so as to obtain the 
optimal bids of the succeeding time units. 
 
3    Empirical ex-post analysis 
    In this section, the proposed ex-post analysis approach is 
described to assess the impact of the fast wind speed 
fluctuations on the actual WPP profit.  

3.1 Energy market and imbalance settlement 
    The TSO imposes an imbalance fee on BRPs violating their 
scheduled power bids on the energy market. In this paper, the 
imbalance settlement of energy takes place at the end of each 
quarter-of-an-hour, i.e. ∆t = 1/4 h. Thus, for each of the 96 
daily periods, depending on the system requirements for 
upward or downward regulation, an imbalance price is 
determined, which reflects the real-time value of energy. In 
order to assess the actual revenue of the WPP, the obtained 
results of the stochastic model and engaged imbalance prices 
(defined in section 2), along with real-time available power are 
employed.  
    At each settlement period, when the mean observed power 
Pobs is higher than the scheduled power in the energy market 
PCE, the WPP gets paid for its positive deviation as follows: 

Π+ = ∆𝑡𝑡(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝐶𝐶𝐶𝐶)𝜆𝜆↑                                             (9) 
Consequently, the actual WPP’s revenue for participating in 
the energy market is determined as follows: 

Π𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜆𝜆𝐶𝐶𝐶𝐶∆𝑡𝑡𝑃𝑃𝐶𝐶𝐶𝐶 + Π+                                                   (10) 
Accordingly, the loss of profit when trading the surplus of 
power by the imbalance settlement price rather than the day-
ahead market price, so-called opportunity cost, is yielded as 
follows: 

Π𝑜𝑜𝑜𝑜 = ∆𝑡𝑡(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝐶𝐶𝐶𝐶)(𝜆𝜆𝐶𝐶𝐶𝐶 − 𝜆𝜆↑)                                    (11) 
On the contrary, when the mean available power is lower than 
the scheduled energy in the energy market, the WPP is 
responsible for its deficit of generation. The payment for 
compensating the negative deviation is expressed as follows:  

Π− = ∆𝑡𝑡(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝐶𝐶𝐶𝐶)𝜆𝜆↓                                                    (12) 

Consequently, the income and opportunity cost of the WPP for 
participating in the energy market is determined by (13) and 
(14) respectively, as follows: 

Π𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜆𝜆𝐶𝐶𝐶𝐶∆𝑡𝑡𝑃𝑃𝐶𝐶𝐶𝐶 + Π−                                                   (13) 
Π𝑜𝑜𝑜𝑜 = ∆𝑡𝑡(𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝐶𝐶𝐶𝐶)(𝜆𝜆𝐶𝐶𝐶𝐶 − 𝜆𝜆↓)                                     (14) 
3.2 Reserve and balancing markets 
The settlement period for procurement and activation of the 
reserve is equal to 10 seconds (which is shorter than the 15 
minutes of the imbalance energy settlement). The percentage 
of FCR to be automatically activated by the TSO is a function 
of the system frequency deviation, ∆f, as shown in Fig 1 It can 
be seen that when -0.01≤ ∆f ≤ 0 FCR is not activated, while 
all contracted FCR capacity is activated for ∆f < -0.2. In the 
range -0.2 ≤ ∆f ≤ -0.01, the percentage of the activated FCR θ 
is linearly proportional to ∆f. The same scheme, though with a 
negative sign, is applied for downward FCR activation.  

                        
Fig 1. Percentage of FCR activation with respect to ∆f 

The WPP’s net revenue for procuring reserve capacity Πcap is 
computed over each 10-second interval δt as follows: 

Π𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑅𝑅𝐶𝐶𝐶𝐶𝜆𝜆𝐶𝐶𝐶𝐶 − 𝛿𝛿𝛿𝛿
∆𝑡́𝑡
∑ 𝑅𝑅𝐶𝐶𝐶𝐶𝜆𝜆𝐶𝐶𝐶𝐶𝕀𝕀(𝑃𝑃𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 < 𝑅𝑅𝐶𝐶𝐶𝐶)∆𝑡́𝑡/𝛿𝛿𝛿𝛿
𝑖𝑖=1           (15) 

In (15) Πcap consists of two terms including the expected 
revenue of the WPP for reserve capacity procurement (first 
term) and the penalty for not being able to meet the contracted 
reserve capacity in real-time (second term). In this regard, the 
binary variable 𝕀𝕀 is equal to 1 when the stated condition in the 
bracket is satisfied, i.e. observed power being less than the 
contracted FCR. The constants ∆t´ and δt represent the energy 
and reserve imbalance settlement periods in seconds, 
respectively.  

Additionally, the balancing revenues Πact for FCR activation 
is expressed as follows: 

Π𝑎𝑎𝑎𝑎𝑎𝑎 = ∆t 𝛿𝛿𝛿𝛿
∆𝑡́𝑡
∑ 𝑅𝑅𝐶𝐶𝐶𝐶𝜃𝜃𝑖𝑖𝜆𝜆𝑅𝑅+𝕀𝕀�𝑃𝑃𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ≥ 𝑅𝑅𝐶𝐶𝐶𝐶�∆𝑡́𝑡/𝛿𝛿𝛿𝛿
𝑖𝑖=1                     (16) 

where λR+ is the price of reserve activation.  
Additionally, the WPP is penalized when failing to meet the 
contracted or demanded reserve as follows:  
Π𝑅𝑅− = −∆t 𝛿𝛿𝛿𝛿

∆𝑡́𝑡
∑ 𝑅𝑅𝐶𝐶𝐶𝐶𝜃𝜃𝑖𝑖𝜆𝜆𝑅𝑅−𝕀𝕀�𝑃𝑃𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 < 𝑅𝑅𝐶𝐶𝐶𝐶�∆𝑡́𝑡/𝛿𝛿𝛿𝛿
𝑖𝑖=1                  (17) 

where λR- is the penalty price used in reserve imbalance 
settlement. It should be noted that, in this mechanism, the WPP 
should at least provide the contracted reserve capacity in order 
to get paid for its activation. In other words, the penalty term 
(17) is applied when the WPP is unable to provide (in real-
time) the reserve capacity scheduled in day-ahead.  
 

0.01 0.2 -0.2 -0.01 

100% 

 -100% 

∆f (HZ) 

θ% 
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4    Numerical Results 

The proposed stochastic model and ex-post analysis are 
implemented in Julia/JuMP [13] and Python. In this study, a 5 
MW wind turbine model is used for simulations. Table 1 
summarizes the market prices and penalty rates used to 
evaluate the WPP profit. Additionally, two cases are 
established to investigate the impact of intra-period wind 
speed fluctuations on WPP’s profit. The first case assumes that 
the perfect information of mean wind power for each quarter-
hour is available through an ideal forecaster. On the other 
hand, the second case considers a set of scenarios to represent 
the mean wind speed uncertainty. Particularly, the stochastic 
process of wind speed is simulated through an ARMA scenario 
generation method. The detail of the applied method is 
explained in [10]. Once the associated parameters of the 
ARMA model are obtained, a set of 1000 scenarios, covering 
the interval between the day-ahead market closure gate and the 
first quarter-hour of the next day, is generated. Afterwards, the 
scenario set related to the last quarter-hour is reduced by a 
scenario reduction technique based on the Kantorovich 
distance [10]. The reduced set of mean wind speed scenarios 
is converted to wind power by using the corresponding power 
curve of the wind turbine. 
   For both cases, an additional set of scenarios, characterizing 
the system frequency is produced by sampling over the 
historical data of the last 30 days. These scenarios are reduced 
with the same scenario reduction method. The selected 
scenarios are used to calculate the percentage of the actual 
balancing energy activated in real-time, as described in section 
4.2 and depicted in Fig 1. In the following, the results are 
firstly discussed through an illustrative example that enables 
to qualitatively focus on the effects of fast wind fluctuations 
on a single ex-post scenario. Secondly, an extensive out-of-
sample analysis is carried out to properly quantify the financial 
effects in a multi-scenario probabilistic environment. 
Table 1 Prices and penalty rates of the market 

λCE λCR λ↑ 
30-50 28 30 
λ↓ λR+ λR- 
50 50 150 

4.1 Illustrative example 
4.1.1 First case: In this case, a single scenario representing the 
perfect information on the mean wind power along with a set 
of scenarios representing the percentage of the activated 
reserve is fed to the stochastic model. Since there is no 
uncertainty related to the real-time wind availability, the WPP 
allocates all the forecasted power in the reserve market, i.e. 
RCR= 0.8028 MW, since prices are more beneficial than in the 
energy market. Therefore, the WPP receives a constant 
income, i.e. Π = 23.26 EUR, for playing in the reserve market. 
    For the sake of illustration, one synthetic wind speed signal, 
with the same mean as the actual speed (i.e., 5.7 m/s), is 
generated. The synthetic wind speed signal is then converted 
to wind power using the power curve of the wind turbine as 
shown in Fig 2 (plain line). In parallel, the real-time amount of 
activated FCR is simulated by using the system frequency data 
for the period of interest, as shown in Fig 3 Interestingly, we 
observe that, due to fast (10-sec) wind speed fluctuations and 

the required level of reserve activation, the WPP is not able to 
provide the contracted reserve capacity for several intervals δt, 
thereby losing 55.56% of its expected profit. In Fig 4, the 
instantaneous net revenue of the WPP for reserve activation is 
normalized by the value determined by the day-ahead 
optimization (plain line). 

 

 
Fig 2. Observed power (plain line), contracted FCR for case 

1(dotted line), contracted FCR for case 2 (dashed line) 

 
Fig 3. Required level of FCR activation 

 
Fig 4. Normalized net reserve activation revenue 

 4.1.2 Second case: A set of scenarios regarding the mean wind 
speed and percentage of the activated reserve is fed to the 
stochastic model (1)-(8). The obtained expected revenue and 
optimal bids of the WPP for a range of spot market prices are 
shown in Fig 5. It is seen that the WPP allocates a constant 
feasible power in the reserve market, and devotes the rest in 
the energy market. In this way, the WPP avoids the risk of 
deviation from the contracted reserve capacity. The same 
simulated wind speed signal and system frequency data are 
used for ex-post analysis. It is seen that the available mean 
power may differ from the power bids of the energy market. 
As a consequence, imbalance penalties (opportunity costs), as 
defined in Section 3.1, are occurring. The actual revenue of the 
WPP in the energy markets (ΠDAB) along with the opportunity 
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Fig 5. (left axis) optimal bids, (right axis) expected revenue 

 
Fig 6(a)-(b).  (a) Normalized ΠDAB, (b) Normalized Πop 

 

cost (Πop) are normalized by their related expected term, and 
shown in Fig 6(a)-(b), respectively. One can see that the actual 
revenue of the WPP in the energy market may deviate more 
than 20% from the expected value (obtained at the end of the 
day-ahead optimization). Moreover, the WPP may face an 
opportunity cost of more than 10% with respect to its related 
expected income. 
Furthermore, for some 10-sec intervals, the wind speed drops 
sufficiently low so that the WPP fails to deliver the FCR 
capacity offered in day-ahead. Therefore, the revenues from 
the reserve market also deviate from the expected ones. In this 
regard, the actual revenue of the WPP for reserve capacity 
procurement is 10% lower than the related income of the day-
ahead stage. Moreover, the normalized actual net revenue from 
the reserve deployment is shown in dotted line in Fig 4.  
4.2 Out of sample analysis 
The obtained results in Section 4.1 merely describe the impact 
of wind speed fluctuations on the WPP’s profit based on one 
realization of wind speed and system frequency data for a 
quarter-hour. Hence, to correctly assess the impact of wind 
speed fluctuations on the obtained results of the stochastic 
model, a broader representation of possible realizations of 
wind speed and system frequency should be employed for the 
ex-post analysis. In this regard, 100 wind speed signals and 
system frequency data are exploited to generate 10,000 
different samples. 
4.2.1   First Case: The same expected profit and bids regarding 
the perfect information of the available mean power as section 
4.1.1 are considered. The normalized mean value of the 
instantaneous net reserve activation revenue with respect to the 
produced samples is shown in Fig 7 (plain line). Additionally, 
the standard deviation for each instance is shown by blue bars 

in Fig 7. It is seen that on average, the WPP is not able to meet 
the required reserve activation since the plain curve is below 
zero. In Table 2, the first row summarises the average of the 
normalized revenue elements of the WPP for taking part in the 
reserve market. As shown in this Table, regarding the real-time 
reserve activation, the WPP receives a negative revenue (i.e., 
payment to the TSO) equal to -33.77% of its associated 
expected term. Additionally, on average the actual revenue for 
reserve capacity procurement is only 42.14% of its expected 
one (i.e. 57.86% lower). The overall revenue of the WPP 
regarding activation and procurement of reserve is 39.60% of 
its expected value (i.e. 60.40% lower).  
4.2.2 Second case: In this case, the obtained results of the 
stochastic model regarding scenarios of mean power, i.e. as 
detailed in 4.1.2, are employed. Referring to the energy 
market, due to the fluctuations of wind speed, the WPP losses 
parts of its revenue with respect to its expected value. The 
normalized actual revenue of the WPP resulting from the 
energy market and imbalance settlement (ΠDAB) is shown in 
Fig 8(a). The plain line is the mean value of ΠDAB over the 
samples and the blue bars show the standard deviations. As 
seen in Fig 8(a), referring to the ΠDAB, on average WPP losses 
between 2.27% to 19.09% of its expected revenue. Similarly, 
Fig 8(b) shows the mean and standard deviation of normalized 
cost of opportunity over the samples. It is seen that the cost of 
opportunity is between 1.01% to 11.03% of the expected 
revenue for participation in the energy market and imbalance 
settlement.  
Additionally, the WPP faces many periods during which it is 
unable to procure or activate the required FCR. Thus, the 
actual revenue elements of reserve markets deviate from the 
expected ones. In Fig 9, the mean and standard deviation of the 
normalized net reserve activation revenue are plotted by a 
plain line and blue bars, respectively. The second row in Table 
2 expresses the average of the normalized revenue streams of 
the WPP for taking part in the reserve market.  As shown in 
this Table, due to the wind speed fluctuations, regarding the 

 
Fig 7. Normalized net reserve activation revenue and its 

standard deviation concerning out-of-sample analysis 
 
Table 2.  Normalized revenue elements of the reserve market 
 

 Π𝑎𝑎𝑎𝑎𝑎𝑎 + Π𝑅𝑅−��������������� Π𝑐𝑐𝑐𝑐𝑐𝑐������ Π𝑎𝑎𝑎𝑎𝑎𝑎 + Π𝑅𝑅− + Π𝑐𝑐𝑐𝑐𝑐𝑐������������������������ 

Case 1 -33.77% 42.14 % 39.60 % 

Case 2 13.79 % 88.26 % 85.77% 
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Fig 8(a)-(b). (a) Normalized ΠDAB, (b) Normalized Πop 

 
Fig 9. Normalized net reserve activation revenue and its 

standard deviation concerning out-of-sample analysis 
 

real-time reserve activation, the WPP only receives 13.79% of 
the associated expected term. Additionally, on average the 
actual revenue for reserve capacity procurement is 88.26% of 
its expected one (i.e. 11.74% lower). The overall revenue of 
WPP regarding activation and procurement of reserve is 
85.77% of its expected value (i.e. 14. 23% lower). 

5    Conclusion 
In this paper, the impact of intra-period wind speed 
fluctuations on the profit of a WPP participating in JERM is 
assessed. Practically, a stochastic model for the WPP 
participation in JERM is primarily developed. Afterward, an 
ex-post analysis considering two cases including perfect wind 
power information and wind speed forecast scenarios is 
performed. Despite using a risk-averse model in dealing with 
the reserve power violation, the numerical outcomes for both 
cases confirm that the revenue considerably deviates from its 
expected value. Additionally, it can be seen that the day-ahead 
uncertainty of the expected (mean) wind realization (case 2) 
inadvertently helps the WPP to hedge against intra-hour wind 
speed fluctuations (compared to case 1). However, decision-
makers should not be misled to use a forecaster with a wide 
range of uncertainty to handle the uncertainty of wind speed 
fluctuations. On the other hand, they should be cautioned that 
even exploiting a perfect mean wind power forecaster does not 
essentially help them to play optimally in JERM. Therefore, as 
planned in our future research works, decision-makers should 
devise new models to better reflect the intra-period wind speed 
fluctuations in their stochastic optimization framework.  
Moreover, developing short term probabilistic forecast tools to 
capture wind speed variability is another avenue for future 
research works [14]. 
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