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Abstract—Electricity markets around the world are opening up
to a greater contribution from wind power producers (WPPs).
In this regard, WPPs are incentivised to participate in both
energy and reserve market floors while being responsible for
real-time deviations from their submitted bids. Therefore, despite
uncertainties in wind speed and system frequency, effective
control systems should be developed to enable WPPs to respond
reliably concerning their committed day-ahead bids, as flexible
conventional power plants do. However, designing a control
system for WPP to regulate their capacity margin and output
power as per the offered reserve bid is challenging, as a fast
response with respect to the offered balancing service is required.
This paper proposes an effective control system that allows
WPP to regulate their set-points so as to provide the committed
reserve power while considering the real-time wind variations.
A machine-learning algorithm based on the Adaptive Neuro-
Fuzzy Inference System (ANFIS) is used to predict the wind
speed of the following instances, to be used as input to the
control system. Several wind profiles are generated to simulate
a practical case study, including real and predicted cases with
varying levels of turbulence. Finally, the effectiveness of proposed
control strategies on the WPP’s profit is evaluated.

Index Terms—Wind energy, reserve market, control system,
primary frequency control

I. INTRODUCTION

Wind power generation across the world is increasing con-
sistently. The year 2020 emerged as the best year in the history
for wind power industry with 93 GW of new wind power
installations and year-over-year growth of 53%, bringing the
global cumulative wind power capacity to 743 GW [1]. The
participation of wind energy in the ancillary services market
is a matter of concern due to the inherent uncertainty and
intermittent nature of wind power. The increasing participation
of renewable energy in electricity markets tends to create a
degradation of the frequency response. A possible solution to
this problem and a way to increase WWP’s profit, is increased
participation of WPPs in the reserve market [2]. Studies have
shown the feasibility of wind turbines in providing ancillary
services such as primary reserve [3]. Also, the electricity
markets around the world are increasingly offering shorter pro-
curement periods for reserve power. These developments have
incentivised a sustained research in this field. However, for

active participation in the joint day-ahead energy and reserve
market (JERM) a fast response control system is required.
There are several methods for the control of a direct-driven
wind turbine [4]- [6]. A generator control method that uses
interior permanent magnet synchronous generator (PMSG)
controlled by a direct torque control scheme is presented in [7].
An improved direct torque control method for smooth power
injection and short circuit protection is presented in [8]. These
control strategies are widely used for variable-speed generation
and for extracting the maximum power available in the wind.
However, the control system proposed in this paper aims to
explore the wind turbine control design that is capable of
following not only the grid frequency but also the fast-varying
wind speed in order to adjust the power output in real-time
and maximise the WPP’s profit. The proposed control system
is validated with several tests for different control designs
and wind profiles with different turbulence intensity levels
(TIL). These wind profiles are then processed using a machine
learning algorithm based on ANFIS to predict the wind speed
data. The real and predicted wind profiles are then used in
different case studies to analyse the control response. Finally,
the results from the different operation strategies are evaluated
focusing on the WPP’s profit in the electricity market. The key
contribution of this paper is proposing an advanced control
strategy for reserve provision as well as evaluating the financial
outcomes of such strategy for a WPP participating in JERM.

II. MODEL

The simulation setup consists a wind turbine model in
FAST, a generator model in MATLAB Simulink and a machine
learning algorithm for wind speed prediction. These models
are interconnected as a co-simulation with loop communica-
tions at each time-step of the simulation.

A. Wind Turbine

The NREL 5 MW offshore wind turbine, developed in
FAST, combines aerodynamic, hydrodynamic, structural and
electrical properties of the wind turbine [9]. However, for this
research, in order to retain flexibility over generator dynamics
and the torque control system, the electrical part of the model
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is replaced by a separate model in MATLAB Simulink. The
main properties of the wind turbine are listed in Table I.

TABLE I
WIND TURBINE PROPERTIES

Property Specification

Power rating 5 MW

Rotor orientation & configuration Upwind, 3 blades

Rotor and hub diameter 126 m and 3 m

Hub height 90 m

Cut-in, Rated and Cut-out wind speed 3.0 m/s, 11.4 m/s and 25.0 m/s

B. Generator

The generator model used in this study is a PMSG with
a rated power of 5 MW, rated speed of 12.1 rpm and a
nominal efficiency of 93%. The equivalent diagram of the
generator is presented in Fig. 1. The generator is modeled in
the rotating (d,q) rotating reference frame. In Fig. 1, ePM,q

is the permanent magnet induced back-emf voltage, which
is proportional to the rotor speed. The d and q equivalents
also consist of an additional back-emf each proportional to
the current in the other scheme due to the armature reaction
effect. Rs and Rc respectively represent the copper losses in
the stator winding and the iron losses.The values chosen for
Rs and Lq are 98.5 mΩ and 5.86 mH, respectively.

Fig. 1. Equivalent diagram of a PMSG in the rotating reference frame

C. Wind profile design and prediction

TurbSim, an open source tool is used to generate the primary
wind field used in the simulations. The IEC Kaimal turbulence
model is used to generate several wind profiles with different
TIL. This study also uses a machine-learning algorithm based
on ANFIS to predict the time-series wind speed data. It
involves building a fuzzy-based neural network that learns
historical wind information and uses it to observe future
sequences [10]. Fortunately, high-quality offshore wind profile
measurements are now possible using LIDAR technology,
which provides a full 3D spatial mapping of the wind field at
multiple heights [11]. The time-series prediction represents a
model that uses past values to predict future values. Historical
time-stamped wind data are entered into the ANFIS structure
as inputs, and the predicted future data will be expected
as an output. In general, a non-linear autoregressive model
represents this prediction, obtained by the following equation:

x(k + t) = f [x(k), x(k − 1), x(k − 2), ..., x(k − n− 1)] (1)

Fig. 2. Train and test datasets for ANFIS model (60-min).

where, the function f can find the nonlinear relationship of
past, present, and future values of the x over a set period
t. In this study, the FIS structure is generated using fuzzy
c-means clustering. The Gaussian distribution is considered
for membership functions. For training the network, 750,000
data samples are obtained from an hour wind simulation, in
which 70% of the data points are randomly chosen for training
the network and 30% of the data points are used for test and
validation. The training and testing results are shown in Fig. 2.

III. CONTROL AND OPERATION STRATEGY

In what follows, the control system and different operation
strategies will be described. The operation strategies determine
the power set-point, which is tracked by the control system.

A. Control system

The control system developed for this research aims to track
the maximum power point as well as time-varying deloaded
power set-points, in order to track the grid frequency and wind
speed as per the bids offered in the energy and reserve markets.
The controller at its base is a field oriented control system
where the direct current component is regulated to zero and
the quadrature current is in proportion with the torque. The PI
control scheme is presented in Fig. 3. The PI controller takes
as input, the difference between the reference power and the
actual power output from the generator at each time step. The
PI controller generates a torque control signal in the form of
quadrature current iq such that the error is minimised.
The control design is based on the 200 mHz symmetrical
ancillary service as defined in [12]. Fig. 4 shows a graphical
representation of this service. The frequency based time-
varying reference power Pref is defined in (2). For a WPP
participating in the reserve market with a bid of PRM must
maintain Pref as the sum of base power Pbase and frequency
based power Pf(t). Pf(t) is a time varying quantity propor-
tional to the grid frequency. Pf(t) varies linearly between
-PRM and +PRM for the grid frequency of 50.2 Hz and
49.8 Hz respectively. A controller following such service must
be capable to follow these downwards and upwards ramps
within the specified time. However, for the research presented
in this paper only the frequency range within 49.8 Hz - 50 Hz
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is considered, as this range requires power up-regulation which
is a more complex control implementation.

Pref = Pbase + Pf (t) (2)

For the operation strategy that uses wind speed to determine
the maximum available power, a lookup table based on the
power curve of the wind turbine is used. The power curve of
the wind turbine is presented in Fig. 5. For the performance
analysis of the controller, a test as presented in Fig. 6 is
simulated. Two cases with a highly turbulent wind speed are
simulated. The grid frequency in the two cases is on the
margins of the 200 mHz symmetrical service, i.e., 49.8 Hz and
50.2 Hz respectively. A 5 MW wind turbine offering 1 MW
of FCR for such a service will need to maintain a base power
of 4 MW and a ramp-up and ramp-down of the power output
within the range of 3-5 MW, based on the grid frequency. The
controller shows an efficient performance and the maximum
error in both these cases does not exceed 1%.

Fig. 3. Field oriented control of PMSG
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Fig. 4. Control for a 200 mHz service

B. Operation Strategy

Our optimal decisions framework, developed in [13], is
considered for the participation of the WPP in JERM. The
market incentives in the day-ahead market for energy and re-
serve floors are 33 C/MWh and 34 C/MW, respectively. Also,
the market rate regarding energy imbalance settlement (EIS)
for deficit and surplus of generations are, 35 C/MWh and
30 C/MWh, respectively. Finally, the balancing stage penalty
rate regarding the unavailability of the offered FCR in real-
time is 45 C/MW. The employed decision tool considers wind
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Fig. 5. Power curve of the 5 MW offshore wind turbine

Fig. 6. Controller performance

uncertainty and market incentives to return the optimal share
of power assigned to energy and reserve market floors, thereby
maximizing the WPP’s profit. In this regard, the optimal
decisions concerning the day-ahead energy PEM and reserve
bids PRM are respectively, 0.5 MWh and 1.78 MW. Hence,
the fixed day-ahead revenue of WPP in the day-ahead energy
and reserve market is C 16.49 and C 60.72, respectively.
Additionally, the employed decision tool considers financial
compensations regarding real-time energy and reserve power
bids deviations.
In Fig. 7, three operation strategies are introduced to evaluate
the effectiveness of the proposed control system. Notably, the
evaluation is performed based on wind speed profiles with
medium and high TIL (5% and 10%, respectively), for a
duration of 1 hour. At first, an illustrative case, using two
wind profiles, is presented to observe the advantages of the
proposed method.

1) Operation strategy 1: Operation Strategy 1 (OS-1) uses
an advanced control strategy where the reference power of
the control system is not only based on system frequency
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and the day-ahead optimal bids but also based on the actual
wind speed. This ideal strategy assumes that the real-time wind
speed is known. Therefore, the control is designed such that
if the maximum available power Pmax in the wind is greater
than PRM, the reference power Pref is equivalent to Pmax -
PRM. Whereas, if Pmax is less than PRM, Pref is maintained
at 0. In this way, the reserve market bid is given priority.

2) Operation strategy 2: Operation Strategy 2 (OS-2) is a
naive strategy which merely employs a static reference power
along with system frequency to adjust the wind turbine’s
output so as to maintain the scheduled reserve capacity margin.
The controller is designed to linearly operate to generate
Pref equal to set-points 2.28 MW and 0.5 MW for the two
frequency cases of 49.8 Hz and 50 Hz, respectively. The wind
dynamics are disregarded in this strategy. These fixed set-
points correspond to the power quantities regarding the energy
and reserve markets obtained by the optimal decision tool.

3) Operation strategy 3: Operation Strategy 3 (OS-3) is an
operable implementation of the advanced variable reference
control strategy based on a predicted wind speed and the
day-ahead optimal bids. Since the actual wind speed for the
next time-step is unknown to the control system, in order
to implement OS-1, a prediction of wind speed at the next
time-step is required. Therefore, in OS-3, a prediction model
cfr. § II-C, is utilized to predict the wind speed. Pref , in this
strategy is determined using both, real wind Vreal and predicted
wind Vpred values such that the upper bound of Pref is limited
by Vreal based Pmax. To implement this, Vpred is compared
to Vreal at each time-step. If Vpred is greater than Vreal, then
Pref is based on Vreal. Else, Pref is based on Vpred.

Operation
strategy 1

Operation
strategy 2

Operation
strategy 3

True

FalsePmax > PRM

Pref  = Pmax - PRM

Pref = 0

True

FalseVpred > Vreal

Pref  is based
on Vreal

Pref  is based
on Vpred

Fig. 7. Operation strategies

IV. RESULTS

A. Illustrative example

Fig. 8 shows the real-time power submitted to the energy-
only market (blue lines). In this case, the system frequency
during the 1-hour dynamical ex-post simulation is set to 50 Hz,
thus the reserve capacity is not activated. On the other hand,
the red lines show the wind turbine output power for a system
frequency below 49.8 Hz. In this case, the output power is the
summation of the activated reserve capacity and the power
submitted to the energy market. Importantly, the area between
these 2 curves shows the power that is potentially kept as
reserve capacity. Fig. 8 (a) - (b) shows the harvested wind
power using the ideal strategy, OS-1, for wind profiles with
both 5% and 10% TIL. The average output power to the
energy market for 5% and 10% TIL is respectively, 0.438 MW
and 0.545 MW. Moreover, the wind turbine’s mean output
power for full reserve power activation is 2.215 MW and
2.261 MW, respectively. This can be interpreted as leaving
a capacity margin of 1.778 MW and 1.716 MW regarding the
5% and 10% TIL. With this approach, WPP can stay around its
submitted day-ahead energy and reserve bids in real-time. The
naive strategy, OS-2, submits an average power of 0.5 MW
to the energy market regardless of the TIL. Also, the total
average submitted power to the network when the reserve is
fully activated for TIL 5% and 10% is, respectively, 2.116 MW
and 2.010 MW. Thus, the maintained mean capacity margin
is 1.616 MW and 1.510 MW for the medium and high
TILs, respectively. Note that, as seen in Fig. 8 (c) - (d),
while the average area between the two curves is still fairly
close to PRM , there are several periods with power deficits
concerning the scheduled reserve power. On the other hand,
as seen in Fig. 8 (e), the total power submitted to the energy
market using the proposed strategy, OS-3, is 0.418 MW and
0.447 MW, for 5% and 10% TIL, respectively. Also, as shown
Fig. 8 (f), for a system frequency less than 49.8 Hz, OS-3,
returns a mean output power of 2.108 MW and 2.033 MW
for TIL of 5% and 10%, respectively. It means that OS-3,
on average, is able to keep a reserve capacity of 1.5861 MW
and 1.6896 MW concerning the wind profiles with 5% and
10% TIL, respectively. Remarkably, while the average reserve
power in OS-3 is lower than the naive strategy, OS-2, the
periods with a high deficit of reserve power availability are
lower than OS-2 (this is seen in Fig. 8 (c) - (d) and is further
verified in the next subsection by comparing the real-time
market penalties). Accordingly, the average reserve capacity
margin kept in real-time, and well as the average submitted
power to the energy market is not only close to the day-ahead
bids, but also similar to the one obtained by the ideal strategy,
OS-1 as compared to OS-2.

B. Out-of-sample analysis

While observing the overall effectiveness of the proposed
control strategy using the illustrative example, an out-of-
sample analysis is performed (see Table II). In this way, we
are able to correctly evaluate the advantages of the proposed
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Fig. 8. Power outputs and reserve margin

control strategy with respect to the expected in-sample results
(obtained by the bidding model as reported in the last column
of Table II) and other strategies. The expected market revenue
streams, i.e., contribution regarding EIS for deficit ΠE− and
surplus ΠE+ of generation, as well as the balancing stage
penalty ΠR−, will be compared to three operation strategies
in order to evaluate their performance. As seen in Table II,
the penalty paid by WPP using the ideal control strategy, OS-
1, is close to the expected revenue streams. Specifically, in
this case, the total revenue of the WPP (Π) for 5% and 10%
TILs are, respectively, C 72.91 and C 72.48 (which is close
to the corresponding expected value C 74.49). On the other
hand, the naive model, OS-2, is unable to provide the reserve
power for many periods, thus paying a high penalty at the
balancing stage (i.e., C -9.1028 and C -14.69 regarding 5%
and 10% TIL, respectively). Therefore, the overall revenue is
greatly lower than the expected values (C 68.10 and C 62.52
respectively, for TIL of 10% and 5%). Finally, it is seen that
the total revenue obtained by the practical realization of the
ideal strategy, OS-3, acquires a higher profit than the OS-2
(i.e., C 69.591 and C 65.702 for 5% and 10% TILs). That is
since the penalty paid by WPP due to the inability to activate
the committed reserve is lower than OS-2.

V. CONCLUSION

An operation strategy is developed that allows WPPs to
participate in the JERM. The proposed control strategy not

TABLE II
REVENUE (C)

OS-1 OS-2 OS-3 Expected

TI 5% 10% 5% 10% 5% 10% -

ΠE+ 0 2.02 0 0 0 0.2 3.69

ΠE− -2.17 -0.78 0 0 -2.86 -2.08 -5.85

ΠR− -2.13 -5.97 -9.1028 -14.69 -4.759 -9.628 -0.57

Π 72.91 72.48 68.10 62.52 69.591 65.702 74.49

only takes system frequency and scheduled bids as input but
also predicts the wind speed of the next time-step to properly
adjust the reference power, thus providing the reserve power.
The controller is validated with an efficient performance for
several cases with varying level of TILs. The effectiveness of
the proposed control strategy is also validated ex-post, based
on the optimal WPP bidding decisions.
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