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Abstract-- The current wind farm control schemes qualify wind 

power producers (WPPs) to provide balancing services in comple-

ment to energy in modern electricity markets. Accordingly, WPPs 

are responsible for real-time deviations in both energy and reserve 

market floors, which are settled at different time scales. WPPs 

should adjust their output to cope with fast wind variations, which 

are critical in the balancing stage. In this paper, we devise a relia-

ble high-temporal-resolution day-ahead bidding framework for 

WPPs considering the ultra-short-term wind stochasticity. To that 

end, the model for the bidding strategy is enriched with a proba-

bilistic constraint controlling the confidence level on reserve bids 

to enhance the reliability of the offered capacity. Additionally, an 

original Auxiliary Classifier Wasserstein Generative Adversarial 

Network (ACWGAN) is proposed to generate high-temporal-res-

olution wind speed scenarios to be embedded into the bidding 

framework. The numerical results firstly confirm the superiority 

of the proposed ACWGAN over the other GAN-based alterna-

tives. For instance, ACWGAN can reach 30% higher classification 

accuracy compared to conditional Wasserstein GAN. Then, the ef-

fectiveness of the proposed data-driven method over its single-res-

olution counterpart and other scenario representation methods is 

verified regarding the minimization of the negative impact of wind 

variability on WPPs' profit and reliability of offered reserve bids. 

Index Terms-- Wind power, probabilistic bidding, balancing 

service, Auxiliary Classifier Wasserstein GAN, multi-resolution 

uncertainty 

NOMENCLATURE 

A. Sets and indices 

𝑇/𝑡 Market time intervals 

Ω/𝜔 Scenarios of hourly mean wind power 

Δ/𝛿 Balancing periods in each market interval 

𝑉/𝜈 Scenarios of minute-wise wind deviations 

Χ and Ψ Sets of first- and second-stage variables 

B. Decision variables of the optimization framework 

ℛ Revenue of a WPP in the DERM 

𝑃𝑡
𝐸𝑜/𝑃𝑡

𝑅𝑜        Day-ahead energy/reserve market power bid at t 

∆𝑝𝜔,𝑡
𝐸↑ /∆𝑝𝜔,𝑡

𝐸↓  Generation surplus/deficit regarding 𝜔 and 𝑡 

∆𝑝𝜔,(𝜈,𝛿),𝑡
𝑅  Scarcity of reserve capacity for (𝜈, 𝛿) at 𝜔 and t 

𝑧𝜔,(𝜈,𝛿),𝑡 Binary variable for reserve control strategy 

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅  Reserve power at t regarding 𝜔 and (𝜈, 𝛿) 

𝑝𝜔,𝑡
𝐸  Allocated power to energy market at t w.r.t 𝜔 

𝑟𝑡 Risk of reserve unavailability at t 

C. Parameters of the optimization framework 

𝜋𝜔,𝑡 Probability of scenario 𝜔 at t 
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𝜇𝜔,𝜈,𝑡 Probability of scenario 𝜈 regarding 𝜔 at t  

𝜆𝑡
𝐸𝑜/𝜆𝑡

𝑅𝑜 Day-ahead energy/reserve price at t 

𝜆𝑡
↑/𝜆𝑡

↓ Energy imbalance price for ∆𝑝𝜔,𝑡
𝐸↑ /  ∆𝑝𝜔,𝑡

𝐸↓  

𝜆𝑡
𝑅 Reserve unavailability penalty at t 

𝑃/ 𝑃 Upper/lower capacity limits of the wind turbine 

𝑃̃𝜔,(𝜈,𝛿),𝑡 Available power at t regarding 𝜔 and (𝜈, 𝛿) 

𝑃̃𝜔,𝑡 
Available hourly power at t regarding 𝜔 

𝜌𝑡
𝑜 Reserve market participation requirement at t 

D. Symbols used in scenario generation model 

𝑤̃𝑡 Wind speed time-trajectory at t  

𝑤̅𝑡 Hourly mean value of  𝑤̃𝑡 
𝜀𝑡 Ultra-short-term mean deviations w.r.t  𝑤̃𝑡 
𝐺𝛼() Generator with parameters 𝛼 

𝐷𝛽() Discriminator or critic with parameters 𝛽 

𝒫𝒵/𝓏 Distribution of latent space/ latent noise vector 

𝒫𝑟/𝑠𝑟  Real data distribution / real samples 

𝒫𝑔/𝑠𝑔 Generated data distribution/ generated samples 

ℒ𝑊(𝐷𝛽 , 𝐺𝛼) min-max loss function in WGAN 

𝜂𝐺𝑃 Gradient penalty coefficient 

𝑠̂ Linearly interpolated data points 

𝜃                    Sample taken from uniform distribution U[0, 1]             

𝒫𝑐/𝑐 Class labels distribution / Class label samples 

ℒ𝐶𝑊(𝐷𝛽 , 𝐺𝛼) min-max loss function of CWGAN 

𝒞𝜍() Classifier with parameters 𝜍 

ℒ𝐴𝑊(𝐺𝛼 , 𝒞𝜍 , 𝐷𝛽) min-min-max loss function of ACWGAN 

logℙ() Log-likelihood loss 

𝜂𝑐 Hyperparameter of the weight of Logℙ() 
𝐻ℎ Shared layers of ACWGAN with parameters h 

ℒ𝐴𝑊
𝐷 /ℒ𝐴𝑊

𝐺  Critic’s/ generator’s loss function of ACWGAN 

E. Symbols used in performance evaluation 

𝑊𝐷(𝒫𝑟 , 𝒫𝑔) Wasserstein distance between 𝒫𝑟  and 𝒫𝑔 

𝛾  Joint distribution with marginals 𝒫𝑟  and 𝒫𝑔 

Γ   Set of all joint distributions of 𝛾 

RMSE [𝑓, 𝑓] Root mean square error between 𝑓 and 𝑓 

𝑑𝑖,𝑗 /𝑑̃𝑙  Local alignment cost encoded by i and j / l 

𝑊= 〈𝑤1, … ,𝑤𝐿〉Warping path with sequence of L pairs 

DTW[𝑓, 𝑓]  Dynamic time warping distance of 𝑓 and 𝑓 

∆ℛ̅̅ ̅̅ % Normalized total profit deviation  

∆𝑟̅̅ ̅% Risk of reserve unavailability deviation 
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I.  INTRODUCTION 

HE growing share of renewable energy resources is a great 

concern for power system operators that have to continu-

ously accommodate the resulting intermittent and uncertain 

power supply while ensuring system stability and security [1]. 

Electricity market policies are therefore emerging for integrat-

ing such resources, which is mainly reflected by the advent of 

spot energy markets and the development of efficient balancing 

mechanisms (by which system operators can use the flexibility 

of market actors to maintain a stable system operation). These 

market opportunities are further complemented with penalty 

mechanisms whereby deviations between scheduled bids and 

real-time delivery are charged with an imbalance fee [2]. In this 

way, the real-time deviations of energy and reserve bids are fi-

nancially penalized through energy imbalance settlement and 

balancing stage mechanisms [3]. To reduce the deviation pen-

alties of a wind power producer (WPP) in the day-ahead energy 

market, a stochastic wind power bidding model is proposed in 

[4]. In [5], a wind speed forecast is used to identify an optimal 

wind power bidding profile by minimizing the energy imbal-

ance penalty.  

Beyond the participation of WPPs in the energy markets, the 

current power electronics-based control schemes of wind tur-

bines (WTs) allow them to modulate their available power and 

offer flexibility to the system [6]-[7]. In [8], a day-ahead energy 

and reserve market (DERM) framework is introduced to moti-

vate WPPs to participate in both energy and reserve market 

floors. However, in [8], the reserve power deviation penalty at 

the balancing stage is assumed to be relatively low, so that the 

WPP is encouraged to submit a riskier reserve bid to the market 

to make a further profit. In [9], an analytical approach consid-

ering hourly wind speed uncertainty and WT control technol-

ogy is presented to assess the added revenue of WPPs taking 

part in the DERM. A stochastic bidding framework, consider-

ing real-time deviation penalties regarding day-ahead energy 

and reserve bids, is developed in [10] to maximize WPPs profit 

in the DERM. The impact of incorporating better hourly fore-

cast information, close to the real-time stage, on WPPs optimal 

bids is also studied. Overall, in these works, intra-hour wind 

variability is mostly diverted to the reserve market [8], and thus 

the offered reserve capacity may not hold high reliability. To 

circumvent this problem, a stochastic chance-constrained 

method for wind power scheduling is proposed in [11], where 

WPP integrates a confidence level on the real-time reserve 

power delivery as a probabilistic constraint in the bidding 

framework.  

The real-time financial compensation for reserve occurs at a 

much shorter time interval than the financial compensation for 

energy deviations in the imbalance settlement mechanism, e.g., 

minute-wise versus hour-wise [11]-[12]. However, all models 

mentioned above neglect this fact. In particular, due to the dif-

ficulty of ultra-short-term wind forecast, the mentioned studies, 

i.e., [8]-[12], have merely employed hourly wind uncertainty 

for the remuneration of real-time energy and reserve deviation. 

This strong assumption may incur opportunity losses due to the 

poor representation of the wind speed dynamics [12]. More 

importantly, when ultra-short-term wind variations are high, 

there is a high risk that the scheduled reserves cannot be de-

ployed in real-time, thus exposing the WPPs to high financial 

penalties. 

 In light of this context, there is an increasing need to properly 

represent the quick dynamics of the wind power behavior and 

feed this information in dedicated decision tools. Several 

model-based scenario generation approaches such as copula 

and auto-regressive moving average are presented in the litera-

ture to characterize wind uncertainty [13]. However, the quality 

of the generated scenarios in such approaches is highly limited 

by modeling and statistical assumptions [13]-[14]. For example, 

the quality of the scenarios generated via the copula method is 

extremely sensitive to the copula function chosen to capture the 

dependence features [15]. As an interesting case, evidence sug-

gests that the 2008 housing crisis in the US was partly due to a 

misspecified copula function [15]. Additionally, the use of cop-

ula in higher dimensions is challenging [16], as it is inflexible 

in defining multiple dependency structures among features 

[16]. Therefore, generating ultra-short-term wind scenarios us-

ing copula is extremely challenging as each intra-period time 

step appears as a new dimension. 

    The recent advancements in generative adversarial networks 

(GANs) draw wide attention to their application regarding 

model-free scenario generation for renewable energy sources 

[13]-[14], [17]-[18]. The term "model-free" refers to methods 

that are independent of any prior assumptions about the data 

distribution [13]-[14]. These models can return efficient scenar-

ios by directly learning the diversity and stochasticity of the his-

torical data [14]. In [14], it is shown that conditional GAN 

(CGAN) can produce higher quality photovoltaic scenarios in 

comparison with model-based methods such as copula and 

Auto-regression. In [13], the Wasserstein GAN (WGAN) 

model, which has higher training stability compared to GAN, is 

utilized to produce scenarios for wind and solar power varia-

tions with hourly and 5-min temporal resolutions. It is also 

shown that WGAN produces more effective scenarios com-

pared to the copula method. Additionally, the Lipschitz conti-

nuity constraint of Wasserstein distance is imposed by the 

weight clipping method. In [17], an improved technique to en-

force Lipschitz continuity constraint based on gradient penalty 

is employed in conditional WGAN (CWGAN) to improve the 

training process. In [18], CWGAN is used to model load fore-

cast uncertainty based on temperature, historical load measure-

ments, and calendar information. However, the performance of 

CWGAN can be further improved by exploiting an auxiliary 

classifier (ACWGAN) in the network design to predict the class 

labels instead of feeding them as an input to the network. It is 

shown in [19]-[20] that such a design can return high-quality 

outputs for the classification problem of wireless signals. This 

advanced architecture will be used and optimized in this paper 

to generate representative forecast scenarios of wind generation 

with high temporal granularity, which requires advanced adap-

tation based on wind power expertise. 

    Importantly, employing the generated wind speed scenarios, 

via ACWGAN, in the WPP bidding framework is not straight-

forward since the bidding framework requires wind scenarios 

in the form of electrical power. Nevertheless, the transformation 

of wind speed to wind power is a cumbersome task due to the 

T 
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nonlinearities involved in the transfer functions of wind power 

generators [21]. It is shown that modeling techniques based on 

the interpolation of manufacturer data reflect the dynamics of 

WTs better than the ones based on the theoretical cubic rela-

tionship between wind speed and power [22]. In this regard, 

several regression methods such as polynomial, weighted poly-

nomial, cubic B-spline, and penalized cubic B-spline are pro-

posed in the literature [23]. It is shown in [23] that penalized 

cubic B-spline method, as employed in this paper, better con-

trols the curvature of the fitted power curve. 

Overall, this work aims to implement a reliable framework 

that incorporates the ultra-short-term wind variations into the 

day-ahead bidding strategy of WPPs in a DERM. The contribu-

tions of the paper are three-fold: 

1) A novel multi-resolution probabilistic bidding framework 

is proposed to optimize the profit of WPPs in DERM. Com-

pared with existing works, the minute-level wind power 

variations are also embedded in the proposed WPP bidding 

strategy for the first time to precisely model the scheduled 

reserve bids at the balancing stage (cleared at minute-wise 

intervals). Besides, the model is enriched with a novel 

probabilistic constraint controlling the confidence level of 

the wind capacity offered to the reserve market. 

2) To tackle the difficulty faced in representing the ultra-

short-term wind uncertainty, the ACWGAN model is em-

ployed, for the first time, to generate effective scenarios for 

wind deviations conditioned on wind fluctuation levels. 

For this purpose, the definition of the new ACWGAN loss 

function and the connection of its three agents, i.e., critic, 

classifier, and generator, are used to construct its computa-

tional graph. Then, the architecture of each agent of 

ACWGAN is carefully designed to boost the performance 

of the proposed scenario generation while avoiding any 

pre-processing of the input data. The performance of the 

proposed scenario generation method is compared to other 

GAN-based alternatives in terms of statistical and similar-

ity metrics.  

3) The obtained wind speed trajectories with high temporal 

granularity, using ACWGAN, are then converted to power 

scenarios by an intermediate conversion layer comprising 

a penalized cubic B-spline method. Finally, the obtained 

ultra-short-term wind power scenarios are incorporated 

into the proposed data-driven probabilistic bidding frame-

work. Accordingly, the proposed combinatorial contribu-

tion optimally leverages the benefits of both individual 

contributions by adopting the new ACWGAN scenario 

generation with the multi-resolution trading formulation. 

We show that the acquired optimal bids not only enhance 

the WPP profit in the market but also satisfy the required 

confidence level concerning reserve availability. 

Comprehensive case studies and comparisons are conducted 

on real-world datasets. In particular, we quantify the loss of 

profit and deviation of the real-time reserve unavailability risk 

from the reserve market participation requirement when the 

model is fed by other GAN-based scenario generation tech-

niques or scenarios from the direct random sampling method. 

In addition, the superiority of the proposed multi-resolution 

probabilistic bidding framework over the classic single-resolu-

tion and the ones without probabilistic constraint regarding re-

serve availability is highlighted. 

The remainder of the paper is organized as follows. Section II 

describes the proposed multi-resolution two-stage stochastic 

WPP bidding framework with probabilistic constraint. Section 

III presents the details of the proposed ACWGAN model used 

to generate wind speed time trajectories with one-minute reso-

lution. Section IV provides the numerical results. Finally, Sec-

tion V concludes the paper. 

II.  PROPOSED ENERGY AND RESERVE BIDDING FRAMEWORK 

This section first introduces the market mechanisms used in 

the DERM and then formulates the proposed WPP bidding 

strategy to obtain the optimal trade-off between reserve and en-

ergy shares based on the scenarios of wind power production. 

A.  Market Assumptions 

    Transmission System Operator (TSO) is responsible for 

maintaining the equilibrium between supply and demand to 

support grid stability. In the current market design, TSO trans-

fers part of this responsibility to balance responsible parties 

(BRPs) in terms of financial liability. In this way, each BRP is 

subjected to imbalance tariffs for deviations of its actual energy 

delivery from balanced schedules (reported to TSO for every 

settlement period of the next day). In this study, in line with 

Finnish, Swedish, and Danish market settings, the imbalance 

settlement and day-ahead market periods are considered to be 

one-hour [24]. The most commonly used imbalance settlement 

mechanisms in real-world electricity markets include single and 

dual pricing [2]-[3]. Single pricing, e.g., used in Belgium and 

Germany, refers to the settlement procedure in which the BRPs 

with energy deficit have to pay the same imbalance price as the 

BRPs with generation surplus [3]. In contrast, dual pricing, e.g., 

used in Denmark, and Finland, which is applied in this study, 

penalizes net generation surpluses and deficits with different 

prices to create a better incentive for the BRPs to remain in bal-

ance [2].  

    However, in the case of real-time mismatch between supply 

and demand at the system level, the TSO relies on various ca-

pacity services that are purchased from balance service provid-

ers (BSPs) in the reserve market. In line with the real-world Eu-

ropean electricity markets, in this study, the energy and reserve 

markets are cleared sequentially via independent day-ahead 

auctions [25]-[26]. 

    The BSPs should comply with balancing rules concerning the 

offered flexibility. This study focuses on frequency contain-

ment reserve (FCR), which has the fastest time response in the 

balancing market. The capacity test control requires the FCR 

providers to deploy the submitted capacity within one minute 

[27]. Therefore, as the obligation of means entails, the TSO 

should have access to the FCR provider’s measurements and 

control system states to verify the availability of the offered ca-

pacity within the one-minute resolution [27]. Consequently, the 

BSP should satisfy the confidence level of the scheduled re-

serve bid. Deviations from the offered FCR are financially set-

tled in the balancing stage. We consider a balancing market 
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wherein one-directional upward FCR bids are also acknowl-

edged as downward reserve provision for WPPs is not econom-

ically encouraged (since they do not leverage fuel-saving re-

turns as conventional units do). Also, it is assumed that the 

WPPs’ bids are accepted in the DERM due to their low mar-

ginal cost of power production [8]. 

B.  Proposed WPP Bidding Framework 

    Although in this study the DERM is cleared sequentially, 

there still exists a strong relationship between the contribution 

of WPP in the energy-only and reserve markets [25]. This de-

pendency is due to the capacity constraint, hourly and minute-

wise wind uncertainty, coupling constraint of the uncertainty in 

different time scales, and risk of real-time reserve unavailabil-

ity. Therefore, on account of this interdependency, and the short 

delay between the clearing of day-ahead energy and reserve 

markets [26], as a common approach in the dedicated literature 

[8]-[12], this section formulates a single decision-making prob-

lem for WPP bidding to achieve the optimal trade-off between 

the energy and reserve shares based on the scenarios of wind 

uncertainty. 

The revenue of a WPP in the DERM, ℛ, consists of its con-

tribution to the day-ahead market and real-time financial liabil-

ity mechanisms. The day-ahead revenue is modeled at the first 

stage while real-time financial compensation is modeled at the 

second stage. The objective function of the proposed WPP bid-

ding strategy is as follows: 

max
Χ,Ψ

ℛ =∑
[
𝜆𝑡
𝐸𝑜𝑃𝑡

𝐸𝑜 + 𝜆𝑡
𝑅𝑜𝑃𝑡

𝑅𝑜⏟          
(i)𝑡∈𝑇

+ ∑ 𝜋𝜔,𝑡(𝜆𝑡
↑∆𝑝𝜔,𝑡

𝐸↑ − 𝜆𝑡
↓∆𝑝𝜔,𝑡

𝐸↓
⏟          

(ii)𝜔∈Ω

− 𝜆𝑡
𝑅|Δ|−1∑𝜇𝜔,𝜈,𝑡∑∆𝑝𝜔,(𝜈,𝛿),𝑡

𝑅 )

𝛿∈Δ𝜈∈𝑉⏟                    
(iii)

]
  

 

 

 

 

 

(1) 

The decision variables of the optimization problem include non-

negative decision variables of the first stage Χ = {𝑃𝑡
𝐸𝑜 , 𝑃𝑡

𝑅𝑜}, 

non-negative second-stage variables Ψ = {𝑝𝜔,𝑡
𝐸 , ∆𝑝𝜔,𝑡

𝐸↓ , ∆𝑝𝜔,𝑡
𝐸↑ ,

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 , Δ𝑝𝜔,(𝜈,𝛿),𝑡

𝑅 , 𝑟𝑡}  and the auxiliary binary variables 

{𝑧𝜔,(𝜈,𝛿),𝑡} regarding the second stage. The first term in (1), (i), 

presents the day-ahead profit of bidding in the DERM. The sec-

ond term (ii) obtains the financial compensation in the energy 

imbalance settlement considering hourly wind power scenarios 

𝜔 and corresponding energy deficits ∆𝑝𝜔,𝑡
𝐸↓  and surpluses ∆𝑝𝜔,𝑡

𝐸↑  

for market periods. The last term (iii) reflects the balancing 

stage penalties considering wind mean deviation scenario (𝜈, 𝛿) 
and scarcity of the allocated capacity ∆𝑝𝜔,(𝜈,𝛿),𝑡

𝑅  for market pe-

riods. || indicates the cardinality of its set argument. All in-

stances of time-series scenario 𝜈, (𝜈, 𝛿), have an identical prob-

ability for a given hourly wind scenario 𝜔 and market period t, 

i.e., 𝜇𝜔,𝜈,𝑡.  
    At this stage, it is important to note that a forecaster is firstly 

used to generate |Ω|  hourly wind power scenarios to hedge 

against the uncertainty regarding real-time energy deviations. 

Then, an ACWGAN model is used to construct, around each 

mean hourly scenario 𝜔 ∈ Ω, |𝑉| scenarios of wind deviations, 

with length |Δ|, regarding each one-minute interval 𝛿 ∈ Δ, in  

line with balancing stage periods. 

    The total submitted bids to the day-ahead market, should be 

within the upper 𝑃 and lower 𝑃 capacity limits of the WT.  

𝑃 ≤ 𝑃𝑡
𝐸𝑜 + 𝑃𝑡

𝑅𝑜 ≤ 𝑃 ∀ 𝑡 ∈ 𝑇 (2) 

    Then, (3) and (4) ensure that the allocated reserve in scenario 

𝜔  and interval 𝛿  of mean deviation scenario 𝜈  for period t, 
𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 , does not exceed 𝑃̃𝜔,(𝜈,𝛿),𝑡 and 𝑃𝑡

𝑅𝑜, respectively. 

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 ≤ 𝑃̃𝜔,(𝜈,𝛿),𝑡 

∀ 𝑡 ∈ 𝑇; ∀ 𝜔 ∈ Ω; 

∀ (𝜈, 𝛿) ∈ 𝑉 × Δ 
(3) 

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 ≤ 𝑃𝑡

𝑅𝑜             
∀ 𝑡 ∈ 𝑇; ∀ 𝜔 ∈ Ω; 

∀ (𝜈, 𝛿) ∈ 𝑉 × Δ 
(4) 

    Along with (3)-(4), (5)-(6) model the absolute reserve allo-

cation control strategy of WPP, which enable it to act close to 

conventional units since it prioritizes power delivery to the re-

serve market [9], [11].  

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 ≥ 𝑃𝑡

𝑅𝑜 −M𝑧𝜔,(𝜈,𝛿),𝑡 
∀ 𝑡 ∈ 𝑇; ∀ 𝜔 ∈ Ω; 
∀ (𝜈, 𝛿) ∈ 𝑉 × Δ 

(5) 

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 ≥ 𝑃̃𝜔,(𝜈,𝛿),𝑡 −M(1 − 𝑧𝜔,(𝜈,𝛿),𝑡) 

∀ 𝑡 ∈ 𝑇; ∀ 𝜔 ∈ Ω; 
∀ (𝜈, 𝛿) ∈ 𝑉 × Δ 

(6) 

    When available power is adequate, 𝑃̃𝜔,(𝜈,𝛿),𝑡 ≥ 𝑃𝑡
𝑅𝑜 , 𝑧𝜔,(𝜈,𝛿),𝑡 

becomes zero to comply with (4) and avoid inconsistent con-

straints (4)-(6). In this regard, (4) imposes an upper limit, which 

is 𝑃𝑡
𝑅𝑜 , on 𝑝𝜔,(𝜈,𝛿),𝑡

𝑅  and thus the real-time allocated reserve 

power 𝑝𝜔,(𝜈,𝛿),𝑡
𝑅  matches the day-ahead reserve bid. However, 

when the available power is lower than the scheduled bid, 

𝑧𝜔,(𝜈,𝛿),𝑡 becomes equal to one, and (3) becomes an active con-

straint, thereby imposing an upper limit, i.e., 𝑃̃𝜔,(𝜈,𝛿),𝑡 , on 

𝑝𝜔,(𝜈,𝛿),𝑡
𝑅 . Thus, all available power is allocated to the reserve 

market, so as to reduce the reserve deviation penalty.  

    Then, the scarcity of the allocated reserve power Δ𝑝𝜔,(𝜈,𝛿),𝑡
𝑅  

with respect to 𝑃𝑡
𝑅𝑜 is obtained by (7). 

𝑃𝑡
𝑅𝑜 − 𝑝𝜔,(𝜈,𝛿),𝑡

𝑅 ≤ Δ𝑝𝜔,(𝜈,𝛿),𝑡
𝑅  

∀ 𝑡 ∈ 𝑇; ∀ 𝜔 ∈ Ω; 
∀ (𝜈, 𝛿) ∈ 𝑉 × Δ 

(7) 

    Importantly, since the proposed bidding framework consid-

ers wind uncertainty with two different time-scales, constraint 

(8) links the minute-wise and hourly scenarios, as follows:  

𝑝𝜔,𝑡
𝐸 = 𝑃̃𝜔,𝑡 − (|𝑉|. |Δ|)

−1 ∑ 𝑝𝜔,(𝜈,𝛿),𝑡
𝑅

(𝜈,𝛿)∈𝑉×Δ

 ∀ 𝑡 ∈ 𝑇; 
∀ 𝜔 ∈ Ω 

(8) 

    Note that the mean of ultra-short-term scenarios 𝑉 regarding 

each hourly scenario 𝜔  at hourly time-period t 

((|𝑉|. |Δ|)−1∑ 𝑃̃𝜔,(𝜈,𝛿),𝑡(𝑣,𝛿)∈𝑉×Δ ) is equal to 𝑃̃𝜔,𝑡  as they also 

have a length of 1-hour and zero means. Accordingly, the deci-

sion variables can be separated into only two stages since sce-

narios of Ω can be alternatively obtained by 𝑉. However, em-

ploying hourly scenarios is still essential not only because of 

energy imbalance settlement, which occurs every hour, but also 

due to the fact that hourly scenarios can be obtained more accu-

rately than wind scenarios with ultra-short-term variations (as 

will be further explained in section III). Notably, the first stage 

variables, which should be decided upon before the actual real-

ization of the uncertainty in day-ahead, contribute to the strate-

gic decision of the WPP regarding 𝑃𝑡
𝐸𝑜and 𝑃𝑡

𝑅𝑜. On the other 

hand, once the uncertainty is realized, operational decisions are 

taken at the second stage. Accordingly, since absolute reserve 

allocation strategy prioritizes power delivery to the reserve mar-

ket, i.e., enforced by (3)-(6), the operational decision initially 

contains the allocation of reserve capacity regarding minute-
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wise wind scenarios for multiple time horizons, |Δ| = 60. Con-

currently, the remaining hourly mean power, which is obtained 

by (8), is then allocated to the real-time energy market. Conse-

quently, operational decisions considering both hourly and mi-

nute-wise wind power uncertainties are made at the same stage 

(second stage). 

   The deficit and surplus of allocated powers to the energy mar-

ket, used for energy imbalance settlement, are obtained by (9). 

𝑃𝑡
𝐸𝑜 − 𝑝𝜔,𝑡

𝐸 = ∆𝑝𝜔,𝑡
𝐸↓ − ∆𝑝𝜔,𝑡

𝐸↑  ∀ 𝑡 ∈ 𝑇; ∀ 𝜔 ∈ Ω  (9) 

   Furthermore, as the proposed framework aims to satisfy the 

reliability of the offered reserve bids, the following constraint 

is given to approximate the risk of reserve unavailability: 

𝑟𝑡 =  |Δ|
−1 ∑ 𝜋𝜔,𝑡

𝜔∈Ω

∑ 𝜇𝜔,𝜈,𝑡  𝑧𝜔,(𝜈,𝛿),𝑡
(𝜈,𝛿)∈𝑉×Δ

   ∀ 𝑡 ∈ 𝑇 (10) 

    As seen in (10), the probability-weighted average of the in-

stances of power scarcity, 𝑧𝜔,(𝜈,𝛿),𝑡 = 1 , with respect to the 

probability of hourly 𝜋𝜔,𝑡 and minute-wise 𝜇𝜔,𝜈,𝑡 scenarios, es-

timates 𝑟𝑡. 
    Finally, the risk behavior of the WPP is controlled by defin-

ing an upper bound on the reserve market participation require-

ment, 𝜌𝑡
𝑜, for each market time-unit, as follows: 

𝑟𝑡 ≤ 𝜌𝑡
𝑜 ∀ 𝑡 ∈ 𝑇 (11) 

    It should be noted that although it is the TSO that defines 𝜌𝑡
𝑜 

regarding the probability of reserve unavailability, WPP may 

take a lower risk depending on market incentives and wind 

power uncertainty to obtain the optimal allocation trade-off in 

each market floor. 

It is worth noting that the single-resolution model, i.e., classic 

model, can be interpreted as a simplified version of the pro-

posed framework wherein the ultra-short-term wind stochastic-

ity is ignored. Particularly, the classic bidding model can be ob-

tained by setting 𝑃̃𝜔,(𝜈,𝛿),𝑡 = 𝑃̃𝜔,𝑡  and |𝑉|, |Δ|, and 𝜇𝜔,𝜈,𝑡  to 1. 

Also, by removing (10)-(11) the bidding model neglects the 

confidence level of the offered reserve availability.  

    It should be emphasized that in this study, as in [4]-[5] and 

[8]-[12], WPP is considered as a price-taker market participant, 

thereby market prices are not a function of its bids. Moreover, 

it can be seen that market rates enter linearly into the utility 

function (1). Consequently, provided that price forecast errors 

follow a normal distribution or numerous samples are available, 

to apply the central limit theorem, the stochasticity of market 

rates can be substituted with their expected values [5], [9], [11]-

[12]. It is worth noting that, as shown in [28], this simplification 

is still an acceptable approximation even if the forecast errors 

follow a gamma distribution and the utility function is to some 

extent nonlinear. In practice, since market rates are not known 

in advance, their corresponding values can be replaced by ap-

propriate forecasts [5]. 

    The wind power inter-temporal dependency between market 

periods t does not appear explicitly in the formulation, since 

they are already considered implicitly by the hourly scenarios 

fed to the framework. Thus, for the following reasons, the pro-

posed framework can be decomposed into |𝑇| mixed-integer 

linear subproblems, for each t, to enhance the tractability of the 

proposed bidding framework. First, the paper focuses on the im-

pact of wind uncertainty at the short-term, e.g., hourly, and ul-

tra-short-term, e.g., minute-wise, resolutions on the bidding and 

reliability of the reserve power. Also, the chance constraints 

regarding reserve availability (10)-(11) are considered sepa-

rately for each individual market period t. The advantage of em-

ploying individual chance constraints over the joint chance con-

straints is that the reserve reliability in the former one is guar-

anteed over each market period, which is an important concern 

for TSO, rather than just for the whole day-ahead market.  

III.  SCENARIO GENERATION WITH ACWGAN 

A wind speed time-trajectory  𝑤̃𝑡 with |Δ| samples per hour 

at a given hourly period t can be explicitly expressed via its 

hourly mean value 𝑤̅𝑡 and ultra-short-term mean deviations 𝜀𝑡 
by 𝑤̃𝑡 = 𝟏𝑤̅𝑡 + 𝜀𝑡; where 1 is a vector of all ones; 1 and 𝜀𝑡 are 

both |Δ|1 dimension. 

     A great effort is devoted to hourly wind forecast and sce-

nario generation tools in the literature [29]-[33]. In general, 

since hourly wind variations and the required prediction hori-

zon are both tractable, these methods yield acceptable perfor-

mance [29]-[30]. The required hourly wind scenarios Ω for the 

proposed bidding framework can be obtained by any of these 

effective methods, e.g., random sampling from the empirical 

hourly wind distribution [31] or probabilistic hourly wind speed 

forecast [32]. In this study, without loss of generality, the dis-

tribution of hourly wind forecast errors is used to represent the 

stochasticity of wind regarding 𝑤̅𝑡. Remarkably, the distribu-

tion of wind frequency, especially in the medium- and long-

term horizons, is conventionally fitted to the Weibull distribu-

tion [33]. Also, it can be better modeled with the non-paramet-

ric approaches [34]. In this study, the hourly wind uncertainty 

is represented by a normal distribution as in the wind-related 

literature on stochastic programming [31]. 

    Nevertheless, generating efficient zero mean wind deviation 

scenarios with a high temporal resolution, concerning 𝜀𝑡  , is 

challenging [11]-[12]. This increased difficulty is primarily due 

to the higher randomness and volatility of wind over ultra-short 

time periods (e.g., minute-wise) compared to short-term periods 

(e.g., hourly) [29]-[30]. Moreover, in this study, the required 

prediction horizon for the wind deviation scenarios with high 

temporal granularity is |Δ| (i.e., =60) times more than the short-

term scenarios.  

    Therefore, this section proposes a new model to capture the 

time-varying and nonlinear dynamics of high-dimensional 

weather data regarding ultra-short-term wind variations by 

learning their distribution directly without making any model-

ing assumptions. The proposed model for generating wind sce-

narios with high temporal granularity consists of three agents, 

i.e. critic, generator, and classifier. Unlike previous ACWGAN 

models [19]-[20], which use the trained critic for a classification 

problem, we use the generator to create effective wind scenar-

ios. Therefore, with respect to our particular application, we ex-

plain the relevance of the ACWGAN agents and their connec-

tions in the computational graph so as to train the entire model 

with the new learning loss feedback developed for each agent. 

To provide a better perspective, in this section, we detail step 

by step the advantages of the proposed scenario generation tool 

beyond the state of the art by highlighting the limitations of 

other similar GAN-based models used for this purpose. 

A.  Wasserstein GAN with Gradient Penalty 

A GAN consists of an interconnected network comprising a 

generator 𝐺𝛼() and discriminator 𝐷𝛽() which simultaneously 
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compete in a zero-sum game. 𝐺𝛼() samples a latent noise vec-

tor 𝓏 from the latent space with the probability distribution 𝒫𝒵 , 

i.e., 𝓏~𝒫𝒵 , as input and attempts to map it to realistic-looking 

data 𝑠𝑔 , e.g., scenario of wind time-series, in the output 𝐺𝛼(𝓏). 

Notably, 𝓏 should have a relatively low dimension to facilitate 

the generator’s task in mapping the latent space to 𝒫𝑟  [35]. 

𝐷𝛽() receives either a real sample 𝑠𝑟~𝒫𝑟  drawn from the orig-

inal dataset, e.g., actual wind dataset, or synthesized sample 

𝑠𝑔~𝒫𝑔, as input and identifies its realness or fakeness. On the 

other hand, 𝐺𝛼() aims to generate realistic-looking samples, 

e.g., wind time-series scenarios, to deceive 𝐷𝛽() . GAN is 

trained by using binary cross-entropy loss function in a zero-

sum game [18]. 

    Remarkably, GAN’s loss function can be interpreted as min-

imizing Jensen-Shannon Divergence (JSD) between 𝒫𝑟  and 𝒫𝑔 

[36]. However, JSD fails to provide a sensible gradient in GAN 

training when distributions have non-overlapping support [17]. 

This undesirable characteristic of JSD leads to several issues, 

such as training instability and mode collapse in GAN’s training 

process [36]. To circumvent these drawbacks, a Wasserstein 

distance-based loss function is proposed in [37]. Also, adopting 

such a loss function prevents the potential overfitting problem 

of the model [37]. The improved loss function in WGAN, by 

converting 𝑊𝐷 problem to its dual form, for better computa-

tional tractability, is as follows [38]: 

ℒ𝑊(𝐷𝛽 , 𝐺𝛼) = min 
𝛼
max
𝛽
 𝔼𝑠𝑟~𝒫𝑟[𝐷𝛽(𝑠𝑟)]

− 𝔼𝑠𝑔~𝒫𝑔[𝐷𝛽(𝑠𝑔)]

− 𝜂𝐺𝑃𝔼𝑠̂~𝒫̂ [(∇𝑠̂‖𝐷𝛽(𝑠̂)‖2
− 1)

2

] 

(12) 

where 𝑠̂  symbolizes the linearly interpolated data points be-

longing to 𝒫𝑟  and 𝒫𝑔, which is defined as follows: 

𝑠̂ =  𝜃𝑠𝑟 + (1 − 𝜃)𝑠𝑔            𝑠𝑟~𝒫𝑟   ;   𝑠𝑔~𝒫𝑔;   𝜃~𝑈[0,1] (13) 

    In WGAN, the so-called critic 𝐷𝛽() measures the discrep-

ancy between 𝒫𝑟  and 𝒫𝑔, e.g., the discrepancy between actual 

and generated wind time-series, through Wasserstein metric 

𝑊𝐷(𝒫𝑟 , 𝒫𝑔) by inner maximization in (12). On the other hand, 

𝐺𝛼()  tries to produce realistic-looking data by minimizing 

𝑊𝐷(𝒫𝑟 , 𝒫𝑔) through the outer minimization in (12).  

B.  Conditional Wasserstein GAN 

    Despite the satisfactory performance of the discussed gener-

ative models in providing realistic-looking scenarios, they still 

fail to control the features or modes, e.g., wind deviation levels, 

of the generated data. Nevertheless, this limitation can be tack-

led by integrating supplementary information, e.g., class labels, 

into the adversarial training process of GAN variants.  

Particularly, in the critic’s network 𝐷𝛽(|𝑐) of CWGAN, the 

class labels 𝑐~𝒫𝑐  are merged with the actual 𝑠𝑟~𝒫𝑟  and gener-

ated 𝑠𝑔~𝒫𝑔 samples to obtain a joint hidden representation of 

samples and class labels. Furthermore, in the generator’s net-

work, these class labels are merged with the latent noise vectors 

𝓏~𝒫𝒵 . The loss function of CWGAN, ℒ𝐶𝑊(𝐷𝛽 , 𝐺𝛼), is then ex-

pressed as follows:  

ℒ𝐶𝑊(𝐷𝛽 , 𝐺𝛼) =  min 
𝛼
max
𝛽
 𝔼𝑠𝑟~𝒫𝑟[𝐷𝛽(𝑠𝑟|𝑐)]

− 𝔼𝑠𝑔~𝒫𝑔[𝐷𝛽(𝑠𝑔|𝑐)]

− 𝜂𝐺𝑃𝔼𝑠̂~𝒫̂ [(∇𝑠̂‖𝐷𝛽(𝑠̂|𝑐)‖2
− 1)

2

] 

(14) 

    The input-output diagram of CWGAN is shown in Fig. 1(a). 

It can be seen that the input of the critic in CWGAN encom-

passes class labels, highlighted by a bold black arrow, along 

with the joint hidden representation of class labels and input 

samples. CWGAN is practically trained by sequentially updat-

ing the critic and generator parameters, using the loss feed-

backs, shown by dashed lines, through the inner maximization 

and outer minimization problems of (14), respectively. 

C.  Proposed Wasserstein GAN with Auxiliary Classifier 

    CWGAN learns a representation of 𝓏 that depends on class 

labels as it receives them as input to the network. In other 

words, CWGAN requires 𝐷𝛽(|𝑐) to return an estimate of the 

distance between generated and real joint distributions of class 

labels and samples, by merging 𝑐 to either 𝓏 or 𝑠𝑟 , since it re-

ceives them as input. The complicated task of 𝐷𝛽(|𝑐), measur-

ing the discrepancy between the real and generated joint distri-

butions, and 𝐺𝛼(|𝑐), mapping the latent space (which is further 

entangled by merging the class labels into 𝓏~𝒫𝒵) to real data 

distribution, can be alleviated by incorporating a new agent into 

the adversarial training process. This leads to an increase in the 

learning capacity of the model and thus to more effective sce-

narios, as the new agent provides for better classification accu-

racy. The additional agent, which is a classifier 𝒞𝜍() and coop-

erates with 𝐷𝛽() and 𝐺𝛼(), estimates the conditional probabil-

ity of the class labels given the received samples. Thus, the 

critic now merely estimates the distance between real and gen-

erated data distributions, through 𝑊𝐷(𝒫𝑟, 𝒫𝑔 ), which is inde-

pendent of the class labels, e.g., wind deviation levels. 

     Moreover, the generator can better map 𝒫𝒵  to 𝒫𝑟  through 

𝐺𝛼() as its loss function, min 
𝛼
− 𝔼𝑠𝑔~𝒫𝑔[𝐷𝛽(𝑠𝑔|𝑐)], depends 

on the critic’s performance as well. Nevertheless, both the gen-

erator and critic should still contribute to enhancing the ability 

of 𝒞𝜍() to predict the class labels of the samples correctly. The 

proposed three-player adversarial loss function of ACWGAN, 

ℒ𝐴𝑊(𝐺𝛼 , 𝒞𝜍, 𝐷𝛽), can be formulated as: 

ℒ𝐴𝑊(𝐺𝛼 , 𝒞𝜍, 𝐷𝛽) =  min
𝛼
 min
𝜍
max
𝛽
 𝔼𝑠𝑟~𝒫𝑟[𝐷𝛽(𝑠𝑟)]

− 𝔼𝑠𝑔~𝒫𝑔[𝐷𝛽(𝑠𝑔|𝑐)]

− 𝜂𝐺𝑃𝔼𝑠̂~𝒫̂ [(∇𝑠̂‖𝐷𝛽(𝑠̂|𝑐)‖2
− 1)

2

]

−  𝜂𝑐𝔼𝑠𝑟~𝒫𝑟[logℙ(𝒞𝜍(𝑠𝑟) = 𝑐)]

−  𝜂𝑐𝔼𝑠𝑔~𝒫𝑔[logℙ(𝒞𝜍(𝑠𝑔) = 𝑐)] 

(15) 

where 𝜍 indicates the classifier’s trainable parameters, 𝑐 is the 

true class label of the received sample, and 𝜂𝑐 is a hyperparam-

eter regarding the weight of the log-likelihood loss, logℙ(), of 

the correct class prediction. The first three terms in (15) corre-

spond to the 𝑊𝐷 of the generated and real data distributions 

which should be estimated by 𝐷𝛽() through the inner maximi-

zation and minimized by 𝐺𝛼() via the outer minimization 
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Fig. 1. Input-output diagram of (a): CWGAN, (b): ACWGAN.  
 

problem. The last two terms in (15) minimize the negative log-

likelihood loss of the correct class prediction through the mid-

dle minimization problem. 

In practice, the ACWGAN three-player game can be imple-

mented by two neural networks comprising a new critic, which 

also embeds an auxiliary classifier layer as its secondary output, 

and a generator. In this way, the auxiliary classifier 𝒞𝜍() and 

critic 𝐷𝛽() in (15) share the same hidden layers 𝐻ℎ, parame-

terized by ℎ, in the new critic. Importantly, by leveraging the 

benefits of multi-task learning [39], such a structure improves 

the three-player ACWGAN learning performance and reduces 

its complexity. Particularly, the new critic receives an input 

sample, either from 𝒫𝑟  or 𝒫𝑔, and, in contrast to CWGAN, re-

turns two outputs [𝐷𝛽(𝐻ℎ()), 𝒞𝜍(𝐻ℎ())] . The first output, 

𝐷𝛽(𝐻ℎ()), obtains the 𝑊𝐷 between real and generated distri-

butions through the inner maximization in (15). However, the 

second output of the new critic in ACWGAN, 𝒞𝜍(𝐻ℎ()), pre-

dicts the class label of each provided sample rather than merely 

receiving it as an input (as in the case of CWGAN). The new 

critic’s loss function is as follows: 

ℒ𝐴𝑊
𝐷 = max

{ℎ,𝛽,𝜍}
 𝔼𝑠𝑟~𝒫𝑟[𝐷𝛽(𝐻ℎ(𝑠𝑟))] − 𝔼𝑠𝑔~𝒫𝑔 [𝐷𝛽 (𝐻ℎ(𝑠𝑔|𝑐))] 

                                   − 𝜂𝐺𝑃𝔼𝑠̂~𝒫̂ [(∇𝑠̂‖𝐷𝛽(𝐻ℎ(𝑠̂|𝑐))‖2
− 1)

2
]

+  𝜂𝑐𝔼𝑠𝑟~𝒫𝑟[log ℙ(𝒞𝜍(𝐻ℎ(𝑠𝑟)) = 𝑐)]

+  𝜂𝑐𝔼𝑠𝑔~𝒫𝑔 [logℙ (𝒞𝜍 (𝐻ℎ(𝑠𝑔)) = 𝑐)] 

(16) 

    In (16), 𝑊𝐷(𝒫𝑟 , 𝒫𝑔 ) is estimated by the first three terms. 

The last two terms in (16) optimize the auxiliary classifier layer 

by inverting the sign of negative log-likelihood loss, regarding 

the middle minimization problem in (15), and expressing it as a 

maximization problem. 

Nevertheless, in the same fashion as in CWGAN, the gener-

ator receives latent noise vectors along with class labels, e.g., 

wind deviation levels, and returns synthesized samples, e.g., 

scenario of wind time-series, holding desired class attributes. 

Accordingly, the generator aims to produce quality samples to 

reduce the discrepancy between the generated and real data 

distributions, i.e., by solving the outer minimization problem in 

(15). It is seen that only the second term in (15), 

−𝔼𝑠𝑔~𝒫𝑔[𝐷𝛽(𝑠𝑔|𝑐)] , involves the generator’s parameters re-

garding the minimization of 𝑊𝐷(𝒫𝑟 , 𝒫𝑔  ). By inverting its sign, 

the minimization problem can be converted to a maximization 

one. Notwithstanding, the synthesized samples by the generator 

should also have the correct class attributes. It is seen that only 

the last term in (15), −𝜂𝑐𝔼𝑠𝑔~𝒫𝑔[logℙ(𝒞𝜍(𝑠𝑔) = 𝑐)], contains 

the generator’s parameters regarding the correct class predic-

tion error. Thus, by inverting its sign, the two mentioned con-

tributing elements can be combined as follows to construct a 

single loss function ℒ𝐴𝑊
𝐺  for training the generator: 

ℒ𝐴𝑊
𝐺 = max 

𝛼
𝔼𝑠𝑔~𝒫𝑔 [𝐷𝛽 (𝐻ℎ(𝑠𝑔|𝑐))]

+  𝜂𝑐𝔼𝑠𝑔~𝒫𝑔 [logℙ (𝒞𝜍 (𝐻ℎ(𝑠𝑔)) = 𝑐)] 
(17) 

 The input-output diagram of ACWGAN is shown in Fig. 

1(b). It is seen that the new critic of ACWGAN, shown by a 

green block, does not receive class labels as input. Nevertheless, 

in contrast with the critic of CWGAN, the new critic of 

ACWGAN has two outputs, shown by green arrows. The first 

output, 𝐷𝛽(𝐻ℎ()), obtains the 𝑊𝐷 between real and generated 

distributions while the second output, 𝒞𝜍(𝐻ℎ()), predicts the 

class label of the provided sample. Finally, ACWGAN is 

trained by sequentially updating the parameters of the new critic 

and generator through loss feedbacks ℒ𝐴𝑊
𝐷  and ℒ𝐴𝑊

𝐺 , (shown by 

dashed lines), respectively. 

    The training process of ACWGAN is elaborated in detail in 

Algorithm I. Importantly, as seen in Algorithm I, at each train-

ing step, the new critic is first trained by few iterations, typically 

𝑛𝑑 = 5 [38], to estimate 𝑊𝐷(𝒫𝑟 , 𝒫𝑔) and improve the classifi-

er's ability to correctly predict class labels of 𝑠𝑟~𝒫𝑟  and 𝑠𝑔~𝒫𝑔. 

During this step, the generator’s parameters are not updated, 

since 𝔼𝑠𝑔~𝒫𝑔 [𝐷𝛽 (𝐻ℎ(𝑠𝑔|𝑐))]  has different signs in the loss 

functions (16) and (17). Thus, after the new critic training, the 

generator is trained for one iteration to minimize the obtained 

𝑊𝐷  through the first term in (17), i.e., maximizing 

−𝑊𝐷(𝒫𝑟 , 𝒫𝑔), while satisfying the correct class property of 

generated samples as it is also considered in ℒ𝐴𝑊
𝐺 . Notably, the 

new critic’s parameters are not updated at this step, since train-

ing the critic with ℒ𝐴𝑊
𝐺  results in an inaccurate estimate of 

𝑊𝐷(𝒫𝑟 , 𝒫𝑔) due to their conflicting objectives. This procedure 

is continued until the model is converged and desired outputs 

are achieved. 

    Once ACWGAN is trained by labeled samples, the generator 

is capable of producing plausible wind speed mean deviation 

scenarios with a high temporal resolution, e.g., minute-wise 

time granularity, and desired class labels, e.g., deviation levels. 

In this regard, the generator is fed by K noise vectors 𝓏 and de-

sired class label 𝑐 to obtain K scenarios of wind speed mean de-

viation with |Δ|, e.g., = 60, samples per hour.  

    These effectively-controlled wind speed scenarios are then 

converted to wind power scenarios through an intermediate 

conversion layer. In this paper, a penalized cubic B-spline 

method which better controls the curvature of the fitted power 

curve is employed. In this method, a penalty term is added to 

the least square fitting objective in order to control the 
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 Training Algorithm I:  Proposed ACWGAN Model. 

Default values: 𝑛𝑏 = 64, 𝑛𝑑 = 5 ,  𝜂𝐺𝑃 = 10 ,  𝜂𝑐 = 1 , Gradient descent op-

timizer = Adam , 𝑙𝑟 =0.00006. 

Require : 𝑛𝑏, Batch size. 𝑛𝑑, Number of critic’s updates in ACWGAN.  𝜂𝐺𝑃, 

Gradient penalty.  𝜂𝑐, Log-likelihood weight loss. Gradient descent 

optimizer. 𝑙𝑟, Learning rate. 

Require : Initialize model’s weights {𝛼, ℎ, 𝛽, 𝜍}. 
1: while weights have not converged do: 

2: 

 

Execute 𝒏𝒅 training steps for the combined discriminator 

and classifier network. 

for 𝑛 =  1, . . . , 𝑛𝑑  do: 

3:   for 𝑖 =  1, . . . , 𝑛𝑏 do: 

4: 
   

Take a real sample along with its class label from 𝒫𝑟. 
𝑠𝑟 and 𝑐 ~ 𝒫𝑟 

5: 
   

sample a noise vector from latent space 𝒫𝓏. 
 𝓏~𝒫𝓏 

6: 
   

Generate fake sample using 𝐺𝛼. 

𝑠𝑔 ← 𝐺𝛼(𝓏|𝑐) 

7: 
   

Obtain the interpolated sample 𝑠̂. 
𝑠̂ ←  𝜃𝑠𝑟 + (1 − 𝜃)𝑠𝑔, where 𝜃~𝑈[0,1] 

8: 

   

Compute the combined discriminator and classifier 

loss regarding 𝑠𝑟,  𝑠𝑔 and 𝑠̂. 

𝐿𝐷(𝑖) ←  𝐷𝛽(𝐻ℎ(𝑠𝑟)) − 𝐷𝛽 (𝐻ℎ(𝑠𝑔|𝑐)) 

                      − 𝜂𝐺𝑃 (∇𝑠̂‖𝐷𝛽(𝐻ℎ(𝑠̂|𝑐))‖2 − 1)
2

 

+ 𝜂𝑐 logℙ(𝒞𝜍(𝐻ℎ(𝑠𝑟)) = 𝑐) 

 + 𝜂𝑐logℙ (𝒞𝜍 (𝐻ℎ(𝑠𝑔)) = 𝑐) 

9:   end for 

 

10: 
  

Update discriminator and classifier layer parameters 

{ℎ, 𝛽, 𝜍} using gradient descend algorithm. 

{ℎ, 𝛽, 𝜍} ← Adam(−∇{ℎ,𝛽,𝜍} 𝑛𝑏
−1∑ 𝐿𝐷(𝑖)

𝑛𝑏

𝑖=1
) 

11:   end for 

12:  

Execute a single generator training step. 

Sample a batch of noise vectors and class labels.  

{𝓏(𝑖)}𝑖=1
𝑛𝑏 ~𝒫𝓏 ; {𝑐(𝑖)}𝑖=1

𝑛𝑏 ~𝒫𝑐 

13: 
 

Generate a batch of fake samples using the generator network. 

{𝑠𝑔(𝑖)}𝑖=1
𝑛𝑏
← 𝐺𝛼({𝓏(𝑖)}𝑖=1

𝑛𝑏 |{𝑐(𝑖)}𝑖=1
𝑛𝑏 ) 

14: 
 

Update generator parameters 𝛼 using gradient descend algo-

rithm. 

 
𝛼 ← Adam(−∇𝛼 𝑛𝑏

−1  ∑ 𝐷𝛽 (𝐻ℎ(𝑠𝑔(𝑖)|𝑐(𝑖)))
𝑛𝑏

𝑖=1

+ 𝜂𝑐logℙ (𝒞𝜍 (𝐻ℎ(𝑠𝑔(𝑖))) = 𝑐(𝑖))) 

15: end while  

smoothness of the power curve. The details of this method are 

given in [23]. Nevertheless, more advanced techniques, e.g., 

neural networks, can be incorporated into the proposed speed to 

power conversion layer, to deal with a wind farm where its total 

production is significantly affected by other factors such as 

wake effects.  

    Finally, the WPP receives K effective realistic-looking wind 

power scenarios with a high temporal resolution as input to the 

stochastic bidding model. These scenarios follow the actual 

wind dynamics due to the employed loss based on WD. More 

importantly, thanks to the embedded classifier in the 

ACWGAN training, the WPP also has control over the desired 

properties, e.g., deviation levels, of the generated scenarios.  

IV.  NUMERICAL RESULTS 

    This section conducts comprehensive case studies on real-

world datasets, based on the experimental setups described in 

subsection IV.A. Since wind power variation scenarios are the 

inputs of the proposed multi-resolution probabilistic bidding 

framework, the performance of the proposed ACWGAN model 

is firstly compared to the other alternatives based on statistical 

and similarity metrics in subsection IV.B. Afterward, the ad-

vantages of the proposed data-driven probabilistic WPP energy 

and reserve scheduling framework, which models wind uncer-

tainty with both hourly and one-minute resolutions, via 

ACWGAN, over the classic single-resolution model are inves-

tigated in subsection IV.C. Finally, the benefits of using 

ACWGAN in the presented decision tool, in contrast to the 

other alternative scenario representation methods, are further 

investigated in subsection IV.D.  

A.  Experimental Setups 

    A WPP owning a 5.3 MW wind turbine with cut-in, rated and 

cut-out speed of, respectively, 3, 12, and 25 m.s-1 is studied 

here. It should be noted that even with this limited wind power 

capacity, portfolios are still able to participate at both day-ahead 

energy and reserve market floors. For example, in the electricity 

markets operated by EPEX-Spot and Nord Pool (which include 

several countries, such as Belgium), the minimum bid size in 

the day-ahead energy market is 0.1 MW [40]. Also, in many 

countries, such as Belgium, Denmark, and France, the portfo-

lios with at least 1 MW of flexible power are allowed to partic-

ipate in the balancing market as BSP [41]. The hourly wind sce-

narios are obtained by sampling from a normal distribution with 

the mean wind speed of 9 m.s-1 and standard deviation of 1.5 

m.s-1. Notably, this assumption does not affect our comparisons 

since all benchmarks and the proposed method are fed by the 

same hourly wind scenarios.  Furthermore, the ultra-short-term 

wind scenarios are obtained by ACWGAN and evaluated by 

other benchmark algorithms including direct random sampling 

from the training set, CGAN, and CWGAN. Both hourly and 

ultra-short-term scenarios, employed in the proposed bidding 

framework, are considered equiprobable. Market prices and 

penalties for one market period are reported in Table I. These 

market rates are in a similar and comparable range as in the re-

lated literature [11]-[12] and in several European electricity 

markets, such as in Denmark, Norway, and Belgium [42]-[43]. 

The reserve unavailability penalty rate during each imbal-

ance settlement period is constant. The proposed scheduling 

problem is solved for one market period. This reduction is not 

limiting as one can solve the problem for |𝑇| market periods by 

decomposition of (1)-(11) as detailed in subsection II.B. More-

over, this setting allows us to better demonstrate the effective-

ness of the proposed approach by detailing various aspects of 

in- and out-of-sample results.  

    In this study, a sufficiently large dataset regarding minute-

wise and hourly wind variations from 2014 to 2016 is collected 

from a wind site located in Frøya island [44]. Specifically, the 

wind dataset contains 453,600 instances regarding 7,560 hours 

of minute-wise wind data. The processed dataset is then divided 

into training and test sets with a 4:1 ratio.  

    For the sake of a fair comparison, the same type of neural 

network is used for the critic (discriminator) and generator of 

all GAN-based methods. Specifically, the architecture of the 

generator neural network involves three fully connected layers, 

whereas the critic (discriminator) uses three one-dimensional 
 

Table I. Prices and penalty rates of the studied DERM period 

Eo 

[€/MWh] 

Ro 

[€/MW] 

 

[€/MWh] 

 

[€/MWh] 

R 

[€/MW] 

33 35 31 36 40 
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convolution layers. Moreover, the number of neurons in the hid-

den layer of each network for each model is fine-tuned based 

on 50 trial runs. The neural networks are trained with 362,880 

data instances corresponding to 6,048 hours of wind data, i.e., 

each sample has (|Δ| = 60)1 dimension (one dimension per 

minute), along with their associated labels. Notably, the model 

can be trained by any auxiliary information such as seasons, 

ramping rate, or deviation level. In this study, wind fluctuation 

level is adopted as our supplementary information, which can 

be provided by a forecaster, as it has a significant impact on 

optimal decisions of the bidding model. In this study, the fluc-

tuation levels are divided into 5 categories with respect to the 

distribution of wind variability in the training set.  

In particular, the fluctuation levels belonging to intervals [0, 

0.5), [0.5, 1), [1, 1.5), [1.5, 2) and [2, Smax] m.s-1 corresponds to 

the class labels Co, C1, C2, C3, and C4, respectively. Smax denotes 

the maximum wind deviation value and is 5 m.s-1 in our dataset. 

Notably, Co, C1, and C2, with the probability of, respectively, 

0.37, 0.40, and 0.15, are the dominant events in the dataset. On 

the other hand, C3 and C4, with the probability of, respectively, 

0.03, and 0.05 are less probable events. After training the mod-

els, the standalone generator is fed by K=1000 noise vectors 

along with desired class labels to produce appropriate wind 

mean deviation scenarios in the form of time trajectory. For the 

sake of method evaluation, a sufficiently large number of sam-

ples, i.e., 5000, with K=1000 samples for each class, are gener-

ated. Then, the out-of-sample analysis is performed over the ex-

pectation of 75,650 instances regarding 1,513 hours of wind 

data in the test set.  

B.  Evaluation of the Proposed Scenario Generation Model 

    Although the evaluation of GAN-based models with image 

output is rather straightforward, their evaluation for non-image 

data is still an open topic [45]. Therefore, various similarity and 

statistical metrics, based on specific applications, are employed 

in the literature to assess the performance of time-series gener-

ative models. First, Wasserstein distance, WD, between the 

probability distributions of the generated 𝒫𝑔 and test sets 𝒫𝑟   in-

stances of wind trajectories, for each label, is calculated as fol-

lows (to compare the overall variability of two sets): 

𝑊𝐷(𝒫𝑟 , 𝒫𝑔 ) =  inf
𝛾∈Γ(𝒫𝑟 ,𝒫𝑔)

𝔼(𝑠𝑟,𝑠𝑔)~𝛾 ‖𝑠𝑟 − 𝑠𝑔‖ (18) 

    Then, the root-mean-square error (RMSE) of the generated 

and test sets are computed. The RMSE between two temporal 

sequences, 𝑓 and 𝑓, is defined as follows: 

RMSE[𝑓, 𝑓] = √|Δ|
−1∑(𝑓[𝛿] − 𝑓[𝛿])

2

𝛿∈Δ

  (19) 

    Finally, dynamic time-warping (DTW), a well-known time-

series similarity metric, is also used to analyze the similarity of 

time-series in the generated and test sets with respect to the op-

timal alignment of time warps [46]. Let’s 𝑑𝑖,𝑗 = ‖𝑓[𝑖] − 𝑓[𝑗]‖,

𝑖, 𝑗 ∈ Δ be the local cost of alignment between the ith element of 

𝑓  and the jth element of 𝑓 . A warping path 
⟨𝑊 = 〈𝑤1, … , 𝑤𝐿〉 | 𝐿 ∈ [|Δ|, 2|Δ| + 1]⟩ , encodes a global 

alignment between the two time-series, 𝑓 and 𝑓, by defining a 

sequence of L pairs 𝑤𝑙 = (𝑖, 𝑗), which assign element i of 𝑓 to 

element j of 𝑓. The DTW distance between two time-series is 

the total cost of alignment for the optimal (i.e., minimum cost) 

warping path:  

DTW[𝑓, 𝑓] = min
𝑊
∑ 𝑑̃𝑙       

𝐿

𝑙=1
𝑊 = 〈𝑤1, … , 𝑤𝐿〉  (20) 

where 𝑑̃𝑙 = 𝑑𝑖,𝑗 is the local alignment cost encoded by the lth 

pair 𝑤𝑙 = (𝑖, 𝑗) of the warping path W. 

DTW and RMSE are conventionally used to evaluate the 

quality of the generated signals in GAN models [46]. Two real 

wind trajectories are randomly chosen from the test dataset as 

shown by black lines in the first and second columns of Fig. 2. 

Then, after generating a set of wind trajectories by using 

ACWGAN, CWGAN, and CGAN, the most similar synthe-

sized wind time-series based on RMSE and DTW metrics are 

found. The actual wind time-series in the first and the second 

columns are used to obtain the most similar synthesized sample 

with respect to RMSE and DTW metrics, respectively. The ob-

tained synthesized trajectories using ACWGAN, CWGAN, and 

CGAN regarding RMSE metric are, respectively, shown in Fig. 

2(a), (c), and (e) by dashed blue lines. Also, the dashed blue 

lines in Fig. 2(b), (d), and (f) correspond to the obtained trajec-

tories using ACWGAN, CWGAN, and CGAN regarding DTW, 

respectively. It is seen that while the synthesized samples in the 

left column emphasize the static time alignment, the ones in the 

right column relax this assumption by using dynamic time 

alignment. Additionally, the corresponding generated trajecto-

ries using ACWGAN, as shown in Fig. 2(a)-(b), are visually 

similar to the ones belonging to the real dataset for both RMSE 

and DTW metrics. On the other hand, the generated samples 

using CWGAN are visually less similar to the ones belonging 

to the real dataset, compared with the generated samples by 

ACWGAN, regarding both similarity metrics. Also, the ob-

tained samples by CGAN even look farther than their corre-

sponding real samples compared with the ones obtained by 

ACWGAN and CWGAN. In particular, the RMSE between the 

real signals (first column) and the generated signals by 

ACWGAN, CWGAN, and CGAN are 0.47, 0.63, 0.75, respec-

tively. Also, the DTW between the real signals (second column) 

and the generated signals by ACWGAN, CWGAN, and CGAN 

are 21.70, 28.62, 30.17, respectively. 

    Nevertheless, DTW and RMSE merely find the distance of 

two temporal sequences, which are used for qualitative visual 

assessment in Fig. 2. Thus, it is required to obtain representative 

scores based on these metrics for the whole generated scenarios 

on the test dataset. For this purpose, a brute-force search on the 

synthesized and test sets is performed to find the most similar 

time-series based on the desired metric. Then, the average of 

the obtained cost values, i.e., RMSE and DTW, of the corre-

sponding similar signals in real and generated datasets are con-

sidered to obtain the representative RMSE and DTW distance 

of two sets. The acquired results for the mentioned evaluation 

metrics on the whole datasets are recorded in tuples (WD, 

RMSE, DTW) in Table II. The performance of each presented 

method should be compared with other methods for each class 

label individually.  

    It can be seen that CGAN performs poorly with respect to all 

measures compared to CWGAN and ACWGAN. Moreover, the 

performance of the proposed ACWGAN is considerably better 

compared to CWGAN. 
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Fig. 2. Generated wind mean deviation time-series versus the actual time-series. 

The first and second columns correspond to the scenarios selected based on 

RMSE and DTW metrics, respectively. The generated signals using 
ACWGAN, CWGAN, and CGAN are, respectively, shown in rows 1, 2, and 3.  
 

    For example, as seen in the 4th row of Table II, i.e. C3, WD, 

RMSE and DTW of ACWGAN are 1.89, 1.55 and 1.30 times 

lower than those of CWGAN method, indicating higher quality 

of scenarios generated by the proposed method. 

 The ACWGAN model is further compared with the bench-

mark models in terms of classification performance. For this 

purpose, the 5000 generated samples, i.e., 1000 samples for 

each class, are analyzed ex-post in order to obtain their confu-

sion matrix, as shown in Fig. 3. The predicted classes are color-

coded in this figure. The horizontal axis shows the true class 

labels. Hence, each bar segment in a given stacked bar indicates 

the percentage of predicted classes for each true class label. It 

is graphically seen that CGAN has poor performance compared 

to the Wasserstein-based models for Co, C1, C2, and C3. How-

ever, its performance regarding generating wind time-series 

with class label C4 is better than the Wasserstein-based models. 

Its reason can be described as below.  

Notably, C4 has a much wider interval [2, Smax] compared to 

other classes (3 m.s-1 vs. 0.5 m.s-1). Meanwhile, the deviation 

levels of wind time-series belonging to C4 in the real dataset are 

mostly concentrated toward the beginning, and middle of this 

interval. On the other hand, the deviation levels of the generated 

time-series by CGAN are mostly concentrated on the right tail 

of C4 interval (higher deviation level). Thus, although the clas-

sification accuracy of CGAN regarding C4 seems to be im-

proved, as the deviation levels still fall in this wide interval, 

they do not maintain the quality of the real wind signals of this 

class. This can be further confirmed by the poor results of 

CGAN regarding C4, with respect to the similarity metrics, as 

reported in Table II. 

Table II. Comparison of the proposed scenario generation approach with the 
other GAN-based techniques  

        Method 

Class CGAN CWGAN ACWGAN 

Co (0.14, 0.24, 18.20) (0.04, 0.11, 9.33) (0.04, 0.10, 8.95) 

C1 (0.07, 0.43, 23.97) (0.05, 0.37, 17.19) (0.05, 0.31, 16.84) 

C2 (0.15, 1.44, 42.94) (0.07, 0.95, 30.22) (0.06, 0.89, 28.75) 

C3 (0.17, 3.64, 67.17) (0.17, 2.73, 49.52) (0.09, 1.76, 38.22) 

C4 (0.96, 12.61,138.50) (0.20, 3.87, 57.64) (0.13, 3.31, 55.22) 

 

 
Fig. 3. Confusion matrix of CGAN, CWGAN, and ACWGAN regarding class 
labels Co, C1, C2, C3, and C4 

    Therefore, when comparing the performance of these ap-

proaches, one should be careful to look at classification accu-

racy and similarity metrics together. Interestingly, it is seen that 

by leveraging an auxiliary classifier, the classification perfor-

mance of ACWGAN is significantly improved for all class la-

bels compared to CWGAN. In particular, as shown in Fig. 3, 

the accuracy of ACWGAN for class labels Co, C1, C2, C3, and 

C4, is significantly higher than that of CWGAN by 0.8%, 

27.4%, 30.5%, 24.3%, and 8.2%, respectively. 

C.  Advantages of the Proposed WPP Scheduling Model 

    The obtained results of the classic and proposed WPP energy 

and reserve scheduling frameworks are summarized in Table 

III. The WPP’s bidding performance with respect to three re-

serve market participation requirements, 𝜌o ={0, 20, 40}%, de-

fined by TSO, for both classic and proposed frameworks is de-

tailed. The comparative results are presented for very low, Co, 

and high, C4, wind fluctuation levels in Table III. The in-sample 

results, including the submitted energy bid 𝑃𝐸𝑜 and reserve bid 

𝑃𝑅𝑜 to the market as well as the expected revenues from energy 

ℛ𝐸  and reserve ℛ𝑅 , are provided in Table III. Moreover, the 

out-of-sample results regarding the real-time risk of reserve un-

availability 𝑟̃ , and revenues from energy ℛ̃𝐸  and reserve ℛ̃𝑅 

are shown in Table III. The last column details the normalized 

total profit deviation, and risk of reserve unavailability devia-

tion, which are calculated, respectively, by (21) and (22): 

∆ℛ̅̅ ̅̅ % = 
(ℛ̃𝐸 + ℛ̃𝑅) − (ℛ𝐸 + ℛ𝑅)

(ℛ𝐸 + ℛ𝑅)
× 100% (21) 

∆𝑟̅̅ ̅% = 𝑟̃ − 𝑟 (22) 

where r is the expected risk of reserve unavailability and 

dropped from Table III for the sake of brevity. However, in the  
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Table III. The in- and out-of-sample results of the proposed and classic bid-
ding approaches for different 𝜌o and wind deviation classes. The bidding be-

havior of WPP with the non-binding reserve unavailability risk constraint can 

be interpreted by noticing the values indicated by underline. 
   In-sample Out-of-sample Evaluation 

 
𝜌o 

[%] 
Method 𝑃𝐸𝑜 

[MW] 
𝑃𝑅𝑜 

[MW] 
ℛ𝐸 
[€] 

ℛ𝑅 
[€] 

𝑟̃ 
[%] 

ℛ̃𝐸 
[€] 

ℛ̃𝑅 
[€] 

∆ℛ̅̅ ̅̅  
[%] 

∆𝑟̅̅ ̅ 
[%] 

Co 

0 
Classic 0.54 1.42 27.84 49.79 10.22 28.83 49.18 0.49 10.22 

Proposed 1.28 0.71 51.87 24.89 0.00 51.77 24.89 -0.13 0.00 

20 
Classic 0.13 1.96 13.94 64.34 35.84 15.31 63.26 0.37 15.84 

Proposed 0.46 1.65 22.88 55.54 19.71 22.70 55.62 -0.13 -0.29 

40 
Classic 0.00 2.09 11.51 66.82 43.91 12.77 65.75 0.24 3.91 

Proposed 0.14 2.02 14.35 64.31 39.54 14.12 64.45 -0.11 0.01 

C4 

0 
Classic 0.54 1.42 27.84 49.79 35.15 40.95 40.71 5.19 35.15 

Proposed 2.33 0.00 81.30 0.00 0.00 80.95 0.00 -0.43 0.00 

20 
Classic 0.13 1.96 13.94 64.34 47.89 30.43 50.54 3.44 27.89 

Proposed 1.55 0.88 54.91 27.70 19.64 54.56 27.66 -0.47 -0.36 

40 
Classic 0.00 2.09 11.51 66.82 50.18 28.10 52.55 2.96 10.18 

Proposed 1.26 1.27 45.37 37.39 31.05 44.96 37.42 -0.46 -0.40 

 

case of the experiment with the proposed framework on 𝜌o =
40%, the expected risk r is 39.53% and 31.45% regarding Co 

and C4, respectively. It means that the WPP takes a risk lower 

than the reserve market participation requirement, 𝜌o, in order 

to avoid the negative penalties associated with reserve unavail-

ability. For the other experiments, the values of r and 𝜌o are 

identical. 

As seen in Table III, the in-sample results of the classic bid-

ding model are invariable regarding the wind deviation levels, 

i.e., Co and C4. Its reason is that the classic model merely re-

ceives hourly wind uncertainty as input. However, the decisions 

are different concerning 𝜌o. On the other hand, the proposed 

bidding framework returns different and relevant decisions 

based on both the wind deviation level and reserve market par-

ticipation requirement 𝜌o. For both models, as 𝜌o increases, a 

higher bid is submitted to the reserve market floor, whereas a 

lower bid is devoted to the energy market floor. That arises from 

the fact that the incentives for reserve procurement are more 

encouraging for the WPP in the presented market setting (see 

Table I). 

    Interestingly, it can be observed that ∆𝑟̅̅ ̅% for the proposed 

framework is very small, i.e., its out-of-sample risk result is 

close to the expected risk level. On the other hand, the classic 

method fails to stay reasonably close to the expected risk level. 

In particular, the maximum risk deviation for the proposed 

method is -0.4%, whereas for the classic method is 35.15%. The 

same pattern applies to real-time profit deviation ∆ℛ̅̅ ̅̅ % as 

shown in Table III. Thus, the proposed method not only obtains 

higher total profit than the classic method, but also has signifi-

cantly higher robustness, against wind power variations, com-

pared with the classic method.  

Nevertheless, in some cases, the total profits obtained with 

both methods are close (see Table III). However, this profit is 

not feasible for WPP using the classic method. The reason is 

that the corresponding scheduled bids obtained with classic 

method lead ex-post to a violation of the market participation 

requirement. For example, using the proposed bidding frame-

work, with an ex-post profit of 80.95 €, the WPP does not bid 

any power quantity to the reserve market while the ultra-short-

term wind fluctuations are too high, C4, and 𝜌o is zero. In con-

trast, with a slightly higher profit of 8 .   €, the classic model, 

by neglecting the ultra-short-term wind fluctuations, submits a 

rather high-power bid, 𝑃𝑅𝑜 = 1.42 MW, to the reserve market 

floor. Accordingly, while ∆𝑟 for the proposed method is zero, 

the classic model is unable to maintain the real-time reserve re-

liability leading to ∆𝑟̅̅ ̅ = 35.15%. This violation may result in 

exclusion or suspension of participation in the reserve market. 

    Furthermore, the sensitivities of ∆𝑟̅̅ ̅  and ∆𝑅̅̅ ̅̅  to changes in 

wind deviations are much higher in the classic method than in 

the proposed method. It can be seen that for 𝜌o={0, 20, 40}%, 

in the classic method, ∆𝑟̅̅ ̅ is higher for C4, by {24.93, 12.05, 

6.27}%, than for Co. For instance, in the classic method, 

24.93% is obtained by subtracting ∆𝑟̅̅ ̅  of C4 from ∆𝑟̅̅ ̅  of Co, 

where 𝜌o=0, i.e., 24.93=35.15-10.22. The other results in this 

paragraph are also obtained in a similar way. On the other hand, 

the corresponding deviations in ∆𝑟̅̅ ̅ for the proposed method are 

only -{0.00, 0.07, 0.41}%. Moreover, ∆𝑅̅̅ ̅̅  increases by {4.7, 

3.07, 2.72}%, regarding 𝜌o ={0, 20, 40}%, for the classic 

method due to the changes of wind deviation level from Co to 

C4. On the other hand, the corresponding deviations of ∆𝑅̅̅ ̅̅  in 

the proposed method are only -{0.3, 0.34, 0.35}%. The reason 

for the lower sensitivity of the proposed method compared to 

the classical method is that the proposed method implicitly con-

siders wind deviation levels as input to the bidding model via 

the scenarios generated by ACWGAN.  

Similarly, the WPP’s bidding behavior with the non-binding 

reserve unavailability risk constraint in both models can be in-

terpreted from Table III. When 𝜌o is sufficiently high (40% in 

this study), (11) becomes non-binding. Thus, both models bid 

in such a way that the trade-off between the day-ahead revenue 

and the real-time penalty is profitable regardless of the confi-

dence level of reserve availability. The values regarding the 

wind power bidding, with reserve unavailability risk constraint 

non-binding, are underlined in Table III. It is seen that when the 

wind deviation level is low, Co, the classic model obtains the 

expected total profit of  8.33 €, corresponding to ℛ𝐸 +ℛ𝑅, and 

 8.52 € for the out-of-sample analysis. Also, the proposed 

framework yields a slightly higher profit of  8.   € and  8.5  

€ concerning the in- and out-of-sample analysis, respectively. 

In addition, for high wind fluctuation level, C4, the advantage 

of using the proposed method is more significant. The classic 

method obtains  8.33 € and 80. 5 € regarding the in- and out-

of-sample analysis, whereas the proposed framework attains a 

higher profit of 82.   € and 82.38 € for the in- and out-of-sam-

ple analysis, i.e., 2.1% higher in the ex-post analysis. 

 Remarkably, by removing the probabilistic constraint (11), 

the proposed framework loses the reserve provision confidence, 

which has the probability of 1-39.54% = 60.46% and 1-31.05% 

= 68.95% regarding Co and C4 classes, respectively. The classic 

model has lower reserve provision confidence levels of 1-

43.91%= 56.09% and 1-50.18%= 49.82% regarding Co and C4, 

respectively, which are similarly lost when (11) is removed. In 

this case, in both models, the TSO is not aware of the probabil-

ity of the real-time reserve unavailability. However, by requir-

ing the WPPs to fulfill a confidence level regarding the offered 

capacity, the proposed framework is able to respect the reserve 

market participation requirement, as seen from 𝑟̃  results in 
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Table III. On the other hand, the classic model does not have 

this capability as seen from its 𝑟̃ results in Table III. 

Thus, adopting a metric regarding reserve unavailability in 

the proposed WPP multi-resolution probabilistic bidding 

framework enables the TSO to have reliable insight on the real-

time wind power share in reserve provision. 

Meanwhile, the proposed multi-resolution bidding frame-

work solves, for an hourly period and a single risk threshold, 

between 0.07 to 3.94 seconds on a DELL hardware set with In-

tel Core i7 CPU 2.6 GHz and 16 GB of RAM. This is a low 

computation time on a simple hardware set. 

D.  Advantage of Exploiting ACWGAN Compared to other 

Scenario Representation Models in WPP Bidding Framework 

    In this section, the superiority of employing ACWGAN in 

the proposed bidding framework, in comparison with other sce-

nario representation methods, is illustrated. Reserve unavaila-

bility risk deviation ∆𝑟̅̅ ̅% and normalized profit deviation ∆ℛ̅̅ ̅̅ % 

are used as evaluation metrics and are illustrated in Fig. 4(a) 

and 4(b), respectively. The horizontal categorical axis shows 5 

class labels regarding the wind mean deviation levels, Co to C4, 

and four scenario representation schemes.  

    The benchmark scenario representation methods presented 

for comparison with the proposed ACWGAN approach include 

direct random sampling from the training set, CGAN, and 

CWGAN. The vertical axis in Fig. 4(a) and 4(b) corresponds to 

∆𝑟̅̅ ̅%  and ∆ℛ̅̅ ̅̅ % , respectively. Each bar segment within a 

stacked bar represents the value of the evaluation metric (∆𝑟̅̅ ̅% 

or ∆ℛ̅̅ ̅̅ %), regarding 𝜌o. It should be noted that a smaller mag-

nitude of each stacked bar, regardless of its direction, 

     

 

 

𝜌o:  
Fig. 4. Comparison of the proposed ACWGAN scenario generation method 

with direct sampling, CGAN, and CWGAN using the proposed WPP multi-
resolution probabilistic bidding approach based on (a) reserve unavailability 

risk deviation metric and (b) normalized profit deviation metric. 

corresponds to a better-performing approach. In this study, a 

fine resolution, i.e., 5%, concerning the reserve market partici-

pation requirement 𝜌o from 0 to 40% is considered. 

As seen in Fig. 4(a), direct sampling from the training set ob-

tains a lower deviation regarding reserve unavailability risk for 

all wind fluctuation levels, Co to C4, compared to CGAN. This 

observation can be explained considering that CGAN has a poor 

performance regarding the statistical and similarity metrics as 

well as classification accuracy. 

Performance of the CWGAN regarding ∆𝑟̅̅ ̅% is better than 

CGAN for all wind deviation levels while is nonetheless worse 

than the direct sampling method concerning Co, C1, C2, and C3. 

However, it can be seen that the CWGAN yields a lower devi-

ation compared to the direct sampling approach for C4 and al-

most a similar deviation concerning C3. That is because these 

are less-probable classes in the training set. Thus, since enough 

samples are not available, direct sampling cannot provide a 

good approximation to represent the wind deviation uncertainty 

for these classes. Besides, CGAN does not perform well for the 

less-probable classes as it is known to suffer from mode col-

lapse. Remarkably, ACWGAN scenario generation method is 

shown to outperform other GAN-based and direct sampling 

methods in terms of the deviations of the risk of reserve una-

vailability in all classes. 

Regarding the normalized profit deviation, as shown in 

Fig. 4(b), direct sampling performs better than CGAN for wind 

deviation levels Co to C3. On the other hand, CWGAN performs 

better than CGAN for Co, C2, C3, C4 and is very close to CGAN 

in the case of C1. Specifically, regarding less-probable classes, 

CWGAN performs significantly better than direct sampling and 

CGAN. Finally, ACWGAN outperforms direct sampling and 

the other GAN-based scenario generation schemes since the 

magnitude of its stacked bar corresponding to each class label 

is lower than the other alternatives.  

V.  CONCLUSION 

    Participation of wind power producers (WPPs) in the day-

ahead energy and reserve market requires designing dedicated 

decision tools that consider the stochastic process of the wind 

at both low and high temporal resolutions. Accordingly, an ef-

ficient scenario generation tool based on auxiliary classifier 

Wasserstein GAN is firstly proposed to produce the wind mean 

deviation scenarios regarding the ultra-short-term wind uncer-

tainty. The superiority of the proposed scenario generation tech-

nique over the conditional GAN and its Wasserstein-based 

counterpart using statistical and similarity metrics is illustrated. 

Then, a multi-resolution probabilistic WPP bidding framework, 

comprising a novel probabilistic constraint, regarding the relia-

bility of the reserve bids, and the proposed ultra-short-term sce-

nario generation approach, is devised. It is shown that compared 

to the outcomes of the single-resolution model, the profit loss 

and reserve reliability are significantly improved by the pro-

posed data-driven WPP decision-making framework. Finally, 

the significance of the devised modules in the proposed frame-

work is shown by comparing deviations from the expected rev-

enue and reserve unavailability risk with the results obtained by 

other scenario representation alternatives. Future research could 

consider the impact of ultra-short-term wind variations in 
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market prices for possible cases where wind power producers 

participate in the market as price-maker.  
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