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1 Abstract 

The current wind farm control schemes qualify wind power producers (WPPs) to provide balancing services in 

modern electricity markets. Accordingly, WPPs are responsible for real-time deviations in the reserve market, 

settled every few seconds within a market period [1]. Therefore, WPP require to integrate intra-period wind 

variability in energy trading framework. As a main ingredient of such frameworks, in this work, we devise a 

novel scenario generation technique, i.e., Auxiliary Classifier Wasserstein Generative Adversarial Networks 

(ACWGAN), to produce intra-period wind power distribution with high-temporal-resolution. Notably, the 

generator of the neural network is appropriately constrained to return temporal distributions as the output. 

 

2 Introduction 

The recent advancements in generative adversarial networks (GANs) draw wide attention to their 

application regarding model-free scenario generation for renewable energy sources [2]. In [3], CWGAN is 

used to model load forecast uncertainty based on historical load measurements. However, the performance 

of CWGAN can be further improved by exploiting an auxiliary classifier (ACWGAN) in the network 

design to predict the class labels instead of feeding them as an input to the network. It is shown in [2] that 

such a design can return high-quality outputs for wind trajectories. This advanced architecture will be used 

and optimized in this paper to generate representative forecast scenarios of wind distribution, which 

requires advanced adaptation based on wind power expertise. 

 

3 Methodology 

 A GAN consists of an interconnected network comprising a generator 𝐺𝛼() and discriminator 𝐷𝛽() 

which compete in a zero-sum game. The neural networks’ parameters are shown by subscripts. The 

generator 𝐺𝛼() samples a latent noise vector 𝓏 from the latent space with the probability distribution 𝒫𝒵, 

as input and attempts to map it to realistic-looking data 𝑠𝑔 in the output 𝐺𝛼(𝓏). Conventional CWGAN 

learns a representation of 𝓏 that depends on class labels as it receives them as input to the network. In other 

words, CWGAN requires 𝐷𝛽 to return an estimate of the distance between generated and real joint 

distributions of class labels c and samples, by merging 𝑐 to either 𝓏 or 𝑠𝑟 (real samples), since it receives 

them as input. The complicated task of 𝐷𝛽, measuring the discrepancy between the real and generated joint 

distributions, and 𝐺𝛼, mapping the latent space to real data distribution, can be alleviated by incorporating a 

new agent into the adversarial training process. The additional agent, which is a classifier 𝒞𝜍() and 

cooperates with 𝐷𝛽() and 𝐺𝛼(), estimates the conditional probability of the class labels given the received 

samples.  

    The input-output diagram of ACWGAN is shown in Fig. 1. It is seen that the critic of ACWGAN, has 

two outputs, shown by green arrows. The first output, 𝐷𝛽(𝐻ℎ()), obtains the 𝑊𝐷 between real and 
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generated distributions while the second output, 𝒞𝜍(𝐻ℎ()), predicts the class label of the provided sample 

(𝐻ℎ is the hidden layers of the critic). Finally, ACWGAN is trained by sequentially updating the parameters 

of the new critic and generator through loss feedbacks ℒ𝐴𝑊
𝐷  and ℒ𝐴𝑊

𝐺 . The loss function of critic and 

generator are respectively represented by (1) and (2): 

ℒ𝐴𝑊
𝐷 = max

{ℎ,𝛽,𝜍}
 𝔼𝑠𝑟~𝒫𝑟[𝐷𝛽(𝐻ℎ(𝑠𝑟))]

− 𝔼𝑠𝑔~𝒫𝑔 [𝐷𝛽 (𝐻ℎ(𝑠𝑔|𝑐))]  − 𝜂𝐺𝑃𝔼�̂�~�̂� [(∇�̂�‖𝐷𝛽(𝐻ℎ(�̂�|𝑐))‖2
− 1)

2

]

+  𝜂𝑐𝔼𝑠𝑟~𝒫𝑟[logℙ(𝒞𝜍(𝐻ℎ(𝑠𝑟)) = 𝑐)]

+  𝜂𝑐𝔼𝑠𝑔~𝒫𝑔
[logℙ (𝒞𝜍 (𝐻ℎ(𝑠𝑔)) = 𝑐)] 

(1) 

 
Fig.1. The training of the proposed  

ACWGAN 

ℒ𝐴𝑊
𝐺 = max 

𝛼
𝔼𝑠𝑔~𝒫𝑔

[𝐷𝛽 (𝐻ℎ(𝑠𝑔|𝑐))]

+  𝜂𝑐𝔼𝑠𝑔~𝒫𝑔 [logℙ (𝒞𝜍 (𝐻ℎ(𝑠𝑔)) = 𝑐)] 
(2) 

where 𝜂𝐺𝑃 is the gradient penalty coefficient concerning the 1-Lipschitz regularity condition and �̂� symbolizes 

the linearly interpolated data points belonging to 𝒫𝑟  and 𝒫𝑔. ∇‖ . ‖2 is the gradient norm and 𝜂𝑐 is the classifiers 

scale coefficient. logℙ( ) is the log-likelihood loss. 

    The generator’s output layer should satisfy the conditions imposed by general distributions’ shape. To do so, 

we use a SoftMax layer at the output of 𝐺𝛼  to guaranty that the generated mass on each interval sums up to 1 and 

is non-negative. The standard (unit) softmax function 𝜎(𝑧): ℝ𝐾 → (0,1)𝐾 is defined when K is greater than one 

by 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗

𝑗={1,...,𝐾}
.                                                                                                                

The output of generator after training for a given condition is given in Fig.2. In this figure scenarios 

corresponding to the predicted trajectory (in black) is given by coloured curves. In future, the proposed method 

will be used to generate wind distribution scenario using real data. 

 
Fig. 2. The candidate scenarios generated with respect to black wind distribution. 
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