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Abstract—Improving power system flexibility by responsive
demand is essential for integrating wind energy with a high
level of variability in power systems. Carbon dioxide-based
chemical processes as energy-intensive industrial loads may offer
a vast potential of new forms of flexible operation due to their
existing control infrastructure and storage capabilities. However,
a collaborative decision model is needed for optimal energy
sharing among the chemical plant and the grid under the
variations and uncertainties of wind power. This study develops
an optimal two-stage stochastic programming model for a novel
flexible operation strategy of the chemical process coupled with
wind turbines. In the proposed control scheme, a small-scale
wind farm provides the power input of a chemical plant. Wind
turbines are connected to the grid and actively participate in the
day-ahead energy and reserve markets, considering the chemical
plant as a source of flexibility. An equivalent scenario-based
model of the proposed optimization problem is suggested using
the Group Method of Data Handling (GMDH) for a data-driven
prediction of stochastic variables. Simulation results demonstrate
the effectiveness and significance of the proposed approach for
an optimal and collaborative contribution in ancillary market of
a carbon dioxide-based chemical plant supplied by wind energy.

Index Terms—Wind energy, Carbon dioxide-based chemical
plant, Optimization, Flexible operation, Day-ahead market.

NOMENCLATURE

α Additional incentive component
f̄e Average grid frequency for quarter-hourly basis
∆f Grid frequency deviation
ṁ Mass flow rate
ηc Converter efficiency
ηg Generator efficiency
Eω Expected value for each scenario
λsch

e Revenue for scheduled power injection to the grid
λsch

r Revenue for scheduled reserve power
λ+

∆e Revenue for positive deviation in power injection
λ−

∆e Penalty for negative deviation in power injection
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λ+
∆r Revenue for positive power reserve deviation

λ−
∆r Penalty for negative power reserve deviation

λM
∆r Monthly remuneration for power reserve provision

ω Wind scenario
Ωc Compressor rotor speed
Ωm Motor rotor speed
ϕ Ratio between ṁCO2 and ṁH2

ϕref Reference ratio between ṁCO2 and ṁH2

ρ Air density
τm Motor torque
Cd Double layer capacitance
Cp Wind turbine power coefficient
CMax

p Wind turbine maximum power coefficient
e(t) Electrical potential source
fe Grid frequency
g Function of formic acid production
K Droop constant
P PEM electrolyzer power consumption
Pe(ω) Injected electrical power in each wind scenario
P sch

e Scheduled electrical power in a day-ahead market
P Max

Fa Maximum allowable formic acid relative power
P Min

Fa Minimum allowable formic acid relative power
P opr

Fa Operational formic acid power
Pg(ω) Total injected power to the grid
Pi Input pressure
Po Output pressure
Pref PEM electrolyzer reference power
Pr(ω) Activated power reserve in each wind scenario
P sch

r Scheduled power reserve in a day-ahead market
P +

r (ω) FCR upward regulation in each wind scenario
P −

r (ω) FCR downward regulation in each wind scenario
Pwt Wind turbine electrical power
Pω Total available power in each wind scenario
pFa(ω) Formic acid relative power in each wind scenario
R Blade radius
Rd Solution resistance
Rm Electrolyte resistance
Ti Input temperature
To Output temperature
vw Wind speed
vci

w Cut-in wind speed
vcu

w Cut-out wind speed
vn

w Nominal wind speed
Z Total income in the proposed strategy
Zb Total income in the baseline strategy
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I. INTRODUCTION

THE global energy consumption has dramatically in-
creased since the industrial revolution. During the nine-

teenth century, the excessive use of fossil fuels such as coal,
natural gas, and oil has significantly added an extreme amount
of carbon dioxide and other greenhouse gases to the atmo-
sphere. The excessive emission of carbon dioxide subsequently
results in global warming and other severe environmental
problems. The Paris Agreement global framework for avoid-
ing climate change has set out targets to minimize carbon
dioxide emission [1]. The European Union (EU) has also
conducted a schedule for Europe’s neutral climate till 2050
by supporting the sustainable expansion of renewable energy
and Carbon Capture and Utilization (CCU) technologies. This
policy makes Europe a global leader in tracking the record of
decarbonizing power systems [2]. Currently, wind energy has
the most extensive contribution to the EU’s renewable energy
production and is responsible for providing up to 759 TWh by
2030, which will be 23% of the total electricity request [3].
The EU has decided to reduce its net greenhouse gas emissions
by at least 55% by the end of this decade before eventually
attaining net-zero by 2050 [4]. The EU’s regulations ensure the
development of technologies that make it possible to integrate
the energy produced from renewable sources into CCU-based
processes.

CCU processes require access to H2 as a raw mate-
rial to synthesize added value chemicals such as polyols,
polyurethane, formic acid, methane, and methanol [5], [6].
H2 can be obtained from water electrolysis or biomass gasi-
fication using electricity sources. However, electrolysis has
a significant electricity consumption rate in these processes,
known as an indication of high operating costs. Thus, it
is highly recommended for CCU processes to have access
to low-cost renewable energy to significantly decrease their
costs and increase market competitiveness, considering both
environmental and economic points of view [7], [8]. Many
studies have considered opportunities for integrating CCU
processes with renewable energy sources [7], [9]–[11]. [12]
used methanol production via carbon dioxide hydrogenation
as a case study to conceptually analyze the flexibility of
chemical processes that can operate with a varying load,
while meeting a reliable production target. This study reveals
evident potential advantages of process flexibility under a
high penetration level of renewable energy. Although chemical
processes conventionally prefer to operate at a steady-state
with a constant load, combining variable renewable energy can
be addressed by optimal coordination between flexible energy
generation and flexible chemical production [13], [14].

Coupling CCU processes with variable renewable sources
is an efficient path to decrease greenhouse gas emission rates.
However, few studies look into the potential role of these
sources in power system flexibility and demand response.
Nevertheless, integrating CCU processes with renewables can
be complementary with energy storage devices for surplus
electricity generation and even an adequate resolution to
provide grid balancing services. In [15], a case study for the
UK and Spain is presented to use methanol and hydrogen

as chemical storage compounds for wind and solar energy.
The study used nonlinear programming to solve a trade-
off between investment and production capacity. In [16], an
optimal integration of renewable-based processes for several
products is studied. However, no proposal with a relevant
business model and actual power market operation is re-
ported in this study. In [17], a flexible operation strategy is
proposed for formic acid synthesis providing FCR in smart
grids. In [18], the requirements needed for an environmentally
and economically viable methanol producing carbon dioxide
utilization process explored for participating in the energy
system with consideration of the day-ahead or intraday bidding
system, including the seasonality of wind.

The flexibility of the power system has become essential
with an evolving electricity market landscape to cancel the
effects of uncertainties and variabilities that are evident due to
the increased penetration of renewable energy in the energy
mix [19], [20]. Therefore, a collaborative energy-sharing strat-
egy is required for CCU processes coupled with renewables
to actively participate in the ancillary services such that the
power system can accommodate even the most extensive
deviation range of uncertainties. This solution can significantly
accelerate the integration of intermittent electricity sources,
assist demand flexibility, and decrease the dependence on
renewables support schemes [21].

Although little attention is shown to the capacity of CCU
processes coupled with renewables in demand response and
grid balancing services, several studies suggest a collaborative
energy-sharing optimization model among other responsive
demands with flexible operation, the power grid and renewable
energy. [22] proposed a controlled electric vehicle charging
strategy to optimize the peak-valley difference of the grid,
considering the regional wind and photovoltaic (PV) power
outputs using probabilistic models. In [23], a stochastic model
based on chance constraints is suggested for network con-
gestion management in the day-ahead power market with
consideration of the uncertainty of wind power and demand-
side response in order to determine the optimal daily dis-
patch of generators and loads, and to minimize the risk of
transmission congestion. In [24], a two-stage energy sharing
framework is proposed for a new prosumer microgrid with
renewable energy generation, multiple storage units, and load
shifting. The proposed robust energy sharing schedule reveals
the potential to overcome the uncertainties of market prices
and renewable energy.

The main contribution of this study is an optimal collabo-
rative strategy for the flexible operation of a carbon dioxide-
based chemical process synthesizing formic acid connected
to a wind energy source that actively participates in the
day-ahead energy and reserve markets. The significance of
the energy sharing concept in the proposed arrangement is
explored in which wind turbines can support the power grid
while delivering the energy consumption of the process based
on economic viability and the plant owners’ willingness under
different scenarios and system actions. The total profit is
maximized by an optimal contribution of the wind power in
the electricity/reserve market and/or by producing formic acid.
Maximization of profit as the optimization criterion resolves

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2023.3257044

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on March 24,2023 at 08:13:34 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 3

the bidding strategy that should be set before the day-ahead
market’s closure. Therefore, a two-stage stochastic optimiza-
tion framework is suggested, considering the likelihood of
different scenarios of wind power and grid demand for the
day ahead. Thus, the chemical plant base-load can be decided
while (1) maximizing the share of electricity/reserve offering
to the market, considering stochastic behavior of wind and grid
frequency in a day ahead, and (2) maximizing the formic acid
production and CO2 capture, guaranteeing the profitability of
the process and the decarbonization policy. The behavior of the
process subsystems with fast dynamics, i.e., the electrolyzer
and compressors, are investigated up to the reactor inlet for
the proposed optimal energy-sharing framework in varying
operating conditions. The dynamic performance of the reactor
is not included in this study since the reactor’s dynamic for
such liquid phase reactions is sufficiently slow (minutes to
hour scale) [25]. Also, the residence time can be longer than
the power-consuming subsystems responding to frequency
changes in below 10 s for the provision of Frequency Contain-
ment Reserve (FCR). Therefore, such variations are assumed
to be absorbed and dampened due to the reactor’s slow
dynamics, similar to the systems discussed in [26] with having
time constants on the order of minutes to hours. Nevertheless,
variations on the hour scale, which are not in the scope of this
study, are typically compensated by a compressed storage tank.

The article is structured as follows: Section II introduces the
wind turbine and chemical plant models. Section III formulates
the methodology and optimization problem based on wind and
grid frequency prediction. Section IV provides an overview
of the outcomes and results, while Section V presents a
discussion and conclusions.

II. SYSTEM DESCRIPTION

This section describes and illustrates the wind turbine model
and the design of the flexible CCU-based chemical process.
Fig. 1 gives a general overview of the system under study.
Wind power is allocated close to the chemical process, which
captures carbon dioxide and produces formic acid. The system
is also connected to the power grid and can deliver ancillary
services for grid balancing. The chemical plant’s base-load
and the share of FCR [27] should be determined based
on the available wind power, electricity/reserve prices and
the marginal profit of formic acid production, taking into
account the variability of wind energy and grid frequency

Wind power

Formic acid

Power grid

CCU based chemical process

Grid balancing services 
(energy/reserve market)

Flexible 
operation

Figure 1: Overview of the hybrid system.

within a scenario-based stochastic framework. In what follows,
the system component models will be described in more
details. These models will be used to validate the proposed
optimization strategy under different operational conditions.

A. Chemical plant model
The chemical process under study produces formic acid by

thermo-catalysis through hydrogenation of CO2 over hetero-
genised ruthenium catalysts. Formic acid is a basic chemical
that finds use in a variety of applications such as leather
and rubber production, textiles, pharmaceuticals, preservatives
and antibacterial agents in livestock feed. Highly concentrated
CO2 can be captured from various sources, e.g., fossil fuel
power plants or bio-refineries. The price per tonne can be
nearly free, or even negative with incentives, or can rise up
to 600 C/tonne for direct air capture [28]. This study assumes
that the captured CO2 is available under ambient conditions
and has a negligible impact on the Net Present Value (NPV),
which is more affected by consumables, formic acid produc-
tion and electricity consumption. Therefore, CO2 availability
is not supposed to constrain the economic optimality and limit
the performance of the proposed flexible control architecture.
Fig. 2 shows the process flow diagram for conversion of CO2
and H2 to formic acid based on the process developed in
[29]. The synthesis process comprises five sections: (I) the
compression stage of H2 and CO2, (II) the reaction stage, (III)
the formic acid enrichment stage to concentrate the reactor
product, (IV) the amine exchange stage and (V) the distillation
stage for formic acid formation and purification. The process
uses 2464 kg/h of CO2 and 112 kg/h of H2 to produce
10 kt/yr of formic acid. In this model, it is assumed that the
captured CO2 is available at atmospheric pressure. Therefore,
a compression stage is required to increase the pressure up
to the optimal operating pressure of the reactor. The required
H2 is supplied by a 5.79 MW Polymer Electrolyte Membrane
(PEM) electrolyser. The CO2 and H2 are pressurized before
feeding into the reactor. In the reaction stage, CO2 is hydro-
genated in the presence of triethylamine (Et3N) to drive the
thermodynamically limited equilibrium of the hydrogenation
via the formation of a stable adduct, Et3NH+:HCOO− [30]:

CO2(g) + H2(g) −→ HCOOH(aq) (1)
CO2(g) + H2(g) + Et3N(aq) −⇀↽− Et3NH+:HCOO– (aq) (2)

The liquid stream from the catalytic reactor is fed into the
evaporator to concentrate the Et3NH+:HCOO− adduct at
an Acid to Amine Ratio (AAR) of 2.3 by removing water
and excess triethylamine, which allows the amine exchange
in the next stage. Since the Et3NH+:HCOO− adduct can
not be directly separated into formic acid and triethylamine,
the concentrated Et3NH+:HCOO− is combined with n-butyl
imidazole (nBIM) to form nBIMH+ : HCOO− [31]. Then,
the product is introduced into a separation column to produce
pure formic acid according to reactions (3) and (4):

Et3NH+:HCOO– (l) + nBIM(l) −⇀↽− nBIMH+:HCOO– (l) + Et3N(l) (3)
nBIMH+:HCOO– (l) −→ HCOOH(l) + nBIM(l) (4)

A dynamic model of the chemical process is developed to
represent the process dynamics under flexible operation. In this
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Figure 2: Process flow diagram.

process, the PEM electrolyser and compression stages are se-
lected as the main electrical components to provide flexibility
due to their fast dynamic response and significant power con-
sumption. Therefore, the dynamic model is developed based
on the fast dynamic response of the PEM electrolyser and the
compressors, while monitoring the impact on the subsequent
stages. The process elements are individually modelled in
Matlab/Simulink. Then they are integrated to build a complete
model of the synthesis process. A Randles-Warburg (RW)
impedance equivalent is used to model the electrochemical
dynamics of the PEM electrolyser.

Hydrogen and carbon dioxide input streams are pressurized
in two separate compression stages to reach the reactor pres-
sure of 120 bar. The compression stages are first modelled
in Aspen HYSYS to determine the required specifications
to reach the desired pressure level at the reactor, i.e., the
number of stages and the size of the compressors. Then, the
compressors are modelled based on the acquired data, and they
are coupled with models of Permanent Magnet Synchronous
Motors (PMSM) with a variable speed drive to enable the
compressors to operate at variable speeds. The dynamic model
of the PMSMs is developed in the rotating d−q synchronous
reference frame, including copper losses, iron losses and
armature reaction effects [32]. The compressors are modelled
based on the compressor’s mechanical dynamics using the
first-order equation of motion, including rotational inertia
and the compressor and motor torques. The variable-speed
operation is performed by regulating the motor torque by using
field-oriented control, and the corresponding output pressure

and temperature at each rotational speed is obtained by using
an approximation of the compressor performance map. The
reactor model is developed based on the data available in [29],
assuming a constant ratio of CO2 and H2 at the reactor. Based
on the developed model, the formic acid production is obtained
as a function of the relative power consumption of the process
g(pFa(ω)):

g(pFa(ω)) = −31.79 · pFa(ω)2 + 433.16 · pFa(ω) − 61.97 (5)

where pFa = P opr
Fa /P Max

Fa is the relative power calculated
based on operating formic acid power consumption popr

Fa
and maximum formic acid power consumption P max

Fa , where
pFa ∈ [0, 1]. The numerical value of the formic acid production
g is also expressed in kg/h.

The piecewise linearization of (5) results in:

g(pFa(ω)) =

368.65 · pFa(ω) − 35.28, if 0.57 ⩽ PF a(ω) < 1.44
313.50 · pFa(ω) + 44.54, if 1.44 ⩽ pFa(ω) < 2.31
258.35 · pFa(ω) + 172.27, if 2.31 ⩽ pFa(ω) < 3.18
203.01 · pFa(ω) + 348.50, if 3.18 ⩽ pFa(ω) < 4.05
147.82 · pFa(ω) + 527.18, if 4.05 ⩽ pFa(ω) < 4.92
92.75 · pFa(ω) + 843.21, if 4.92 ⩽ pFa(ω) < 5.79

(6)
In order to facilitate the collaborative operation of the CCU
based process with wind energy, a control design is needed to
enhance the process flexibly at the operational level. However,
there are a few concerns regarding the dynamic modeling
of the process. In [33], dynamic modeling of methanation
reactors is studied during start-up (transient) and regulation in
intermittent power-to-gas applications. It has been discussed
that when the methanation unit is fed with a fraction of inlet
flow (partial load), the temperature evolves towards the new
steady state. In order to enhance the flexible operation of the
system, avoiding a hot spot through the catalytic bed, ṁCO2

staging should be adjusted with respect to the initial full load
design, which means part of carbon dioxide should bypass
the first and second reactor. The methanation unit can thus
operate safely between 45% and 100% of the nominal load.
Moreover, the experimental results presented in [34] show
how a full-scale methanation reactor can be operated under
variable process conditions for 1000 hours without complica-
tions. The start and stop can be performed within minutes,
considering the temperature profile. Therefore, overheating
should not be a concern in such processes. In [35], a thorough
review is presented dedicated to feasible applications of formic
acid production by thermo-catalysis through hydrogenation of
CO2 over heterogenized ruthenium catalysts using low-carbon
renewable electricity, considering the dynamic behavior of
the entire chemical process. However, the main contribution
of this research is to suggest using the previously-studied
flexibility of such a process in the provision of FCR [26],
where the electrical flexibility is mainly determined by, e.g.,
the electrolysis and compressors. Therefore, the proposed
control architecture is designed to enhance the process flexibly
at the operational level. The control system is able to track the
reference power while maintaining the process efficiency at the
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Figure 3: Control system for flexible operation of the PEM
electrolyser and the CO2 and H2 compression stages.

desired level with respect to the system’s physical limitations.
The generated hydrogen mass flow rate at the process input
ṁH2 changes due to the varying power setpoint for FCR
provision. Thus, the compressors’ rotational speeds need to be
regulated based on the H2 production variations. Otherwise,
the safe and optimal operating condition of the reactor will
be violated. Fig. 3 illustrates the proposed control scheme for
flexible operation of the process. The primary control loop
tracks the power reference signal Pref by regulating the PEM
electrolyser power consumption P . The secondary control
loop follows the primary controller. It tracks the reference
signal ϕref , which maintains the desired ratio of the hydrogen
mass flow rate ṁH2 and the carbon dioxide mass flow rate
ṁCO2 at the reaction stage. The control architecture enables
the compressors to operate at different rotational speeds by
regulating the PMSM torque using field-oriented control.
The process model employed here can be considered semi-

dynamic in the sense that the components with a short time
constant and direct impact on electric power, i.e., electrolysis
and compressors, are represented by a fully dynamic model,
e.g., by means of Randles-Warburg equivalent cells for the
electrolyzer and rotating reference frame models and motion
equations for the compressors. The reactor itself is modeled
quasi-statically. The above models are presented with more
details in [17]. This semi-dynamic modeling approach is
justified since the electrical flexibility is mainly provided by
the electrolyzer and compressors, while a continuous reactor
can operate with a considerably higher residence time [25].
Moreover, [26] proposed that slow systems with a high time
constant in the order of minutes can effectively dampen and
absorb the higher frequency dynamics of the flexible provision
of ancillary services. The research here focuses on FCR, which
requires a fast response (second scale) on the grid side, for
which the time constant of the electrolysis and compressors
are well suited. It is also important to note that the quadratic
functions 5 and piece-wised 6 are only used in the stochastic
programming framework, where the optimal decision should

be taken hourly based on day-ahead prediction, considering
the penalty and remuneration system on a quarter-hourly basis.
Therefore, 5 and 6 estimate the formic acid production as a
function of electrical power consumption in a steady-state way.

B. Wind turbine model

The wind energy source in this article consists of two NREL
5MW wind turbines [36]. The NREL 5MW baseline wind
turbine model is implemented and coupled to a generator and
converter model. The generator is a direct-drive PMSG, which
is modeled with an equivalent scheme in the rotating reference
frame, as presented in [32]. The efficiency curve is included
in the model as a function of different operating points [37].
As shown in Fig. 4, the wind turbine operating mode depends
on the wind speed. Three operating regions can be defined.
In the partial load region, where the wind speed is below the
rated value, the pitch angle is kept in an optimal position,
and the generator-torque controller aims to maximize power
capture by means of Maximum Power Point Tracking (MPPT).
The transition zone can be considered as an extension of the
first zone. In this region, the primary objective is to regulate
generator speed at rated power by using pitch control. The
blade-pitch controller aims to regulate the generator speed at
its rated value in the full load region, where the wind speed
is above the rated value. Proportional integral (PI) controllers
are used for the pitch and torque control systems. The used
control system is discussed in more detail in [38], [39]. The
total electrical power obtained from each wind turbine can be
expressed as:

Pwt =
0 , vw < vci

w
1
2ρπR2v3

wηgηcCmax
P (λopt, θopt) , vci

w ⩽ vw ⩽ vn
w

1
2ρπR2v3

wηgηcCP (λ, θ) , vn
w ⩽ vw ⩽ vcu

w

(7)

where ρ is the air density in kg/m3, R indicates the blade
length in m, the wind speed is denoted by vw in m/s. CP

is the power coefficient as a function of the dimensionless
tip speed ratio λ and the blade pitch angle θ in degrees. The
generator and converter efficiency are characterized by ηg and
ηc, respectively, which vary depending on the operating point.

In order to obtain the realistic power curve of the wind
turbine, the turbine is operated under different wind conditions,

Figure 4: 5MW wind turbine power curve.
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i.e., mean wind speed and turbulent intensity, and the power
out put of the wind turbine is measured. The data points are
obtained from 20 simulations over 200 minutes for mean wind
speeds of 5 to 20 m/s and turbulence intensity of 10 to 20%.
After data preprocessing and eliminating the outliers that exist
due to turbulence, a cubic polynomial curve fitting is used to
fit the wind turbine power curve, which can be defined as:

Pwt =


0 , 0 < vw < vci

w

a v3
w + b v2

w + c vw + d , vci
w ⩽ vw ⩽ vn

w

5 , vn
w ⩽ vw ⩽ vcu

w

(8)

where vci
w , vcu

w and vn
w are respectively the cut-in, cut-out and

rated wind speeds in m/s. Pwt is a wind turbine electrical
power in MW. a, b, c and d are the parameters of a cubic
polynomial fitted to the data. The parameter values are:

vci
w = 3, vn

w = 11.9, vcu
w = 25 (9)

a = 0.0019, b = 0.0227, c = −0.1140, d = 0.1359

A piecewise linearization is employed to divide the nonlin-
ear function of two wind turbines into several linear sections
as follows:

Pwt =



0 if vw < vci
w

0.1152 · vw − 0.2961 if vci
w ≤ vw < 4

0.2062 · vw − 0.6601 if 4 ≤ vw < 5
0.3086 · vw − 1.1721 if 5 ≤ vw < 6
0.4224 · vw − 1.8549 if 6 ≤ vw < 7
0.5476 · vw − 2.7313 if 7 ≤ vw < 8
0.6842 · vw − 3.8241 if 8 ≤ vw < 9
0.8322 · vw − 5.1561 if 9 ≤ vw < 10
0.9916 · vw − 6.7500 if 10 ≤ vw < 11
0.8425 · vw − 5.1100 if 11 ≤ vw < vn

w
5 if vn

w ≤ vw ≤ vcu
w

(10)

III. OPTIMIZATION PROBLEM FORMULATION

The decision-making of the proposed stochastic optimiza-
tion framework consists of two objectives. The first objective is
to determine the strategic bidding for the scheduled electricity
and reserve quantity in the day-ahead market at the market-
clearing price and in a non-price-making position. The second
objective is to optimize the formic acid production the next
day, satisfying the scheduled bidding quantities as much as is
feasible. Once the participant decides the bidding quantity,
it will not be allowed to change its decision on the next
day against the signed corresponding transaction agreement.
Therefore, a two-stage stochastic optimization process is for-
mulated to support decision-making during the different stages
and periods. The two-stage stochastic energy sharing model
allows the participant to make an optimal decision considering
the day-ahead electricity and reserve transactions (in the first
stage) while optimizing tomorrow’s real-time chemical plant
operations (in the second stage). When tomorrow comes the
deviation from the promised quantities will be compensated
by the chemical plant upward or downward activations. The
central assumption is that the decision-maker can estimate the
expected value of possible scenarios related to wind speed

Grid

Chemical process
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 o
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ra
tin

g
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Figure 5: Collaborative strategy for energy sharing.

and grid frequency when offering its bidding quantity in
the day-ahead electricity/reserve market. On the next day,
the decision-maker then optimizes the base-load of formic
acid production based on available wind power and grid
frequency. Fig. 5 shows the collaborative strategy for energy
sharing among formic acid production P opr

Fa (ω), and the power
injected into the grid Pg(ω). This includes both electricity
Pe(ω) and reserve quantities for upward P +

r (ω) and downward
P −

r (ω) regulation. As the flexible operation region illustrates
in Fig. 5, the available reserve margin can be allocated to
both formic acid production and the electricity market based
on grid frequency and the Transmission System Operator’s
(TSO) demand.

A. Scenario analysis and time-series prediction

One of the main issues in the decision-making of power
systems is how to estimate the uncertainty and variability
nature of wind power and how this variability can be in-
corporated into optimization modeling. The bidding decision
variables in the day-ahead market are selected based on
possible wind speed scenarios and average expected grid
frequency. However, in stochastic programming, the run-time
highly depends on the number of scenarios. Therefore, an
efficient scenario reduction approach is required to reduce the
computational time required for simulating a large number of
cases over a year. In [40], the advantages of incorporating
a deep learning-based time-series forecasting method into a
multistage stochastic programming framework are discussed.
Fig. 6 shows, the Group Method of Data Handling (GMDH)
is used as a deep learning method to estimate the likeli-
hood of four wind scenarios, which their occurrence has a
major impact on the bidding strategy. The GMDH employs
a combination of quadratic and higher polynomial functions
in a particular number of layers and maps input features
to the expected output by creating a multistage nonlinear
pattern [41]. In this study, the GMDH is mainly used as a
prediction tool to forecast time series of wind speed and grid
frequency. The structure of the GMDH network can be created
automatically, only based on prepared training and testing data
sets. Moreover, the GMDH is a self-organizing algorithm that
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Figure 6: Estimating expected value of each scenario based on
day-ahead predictions of wind speed and grid frequency.

gradually sorts out complicated polynomial models and selects
the best solution using the external criterion. Hence, it usually
needs less training data to overcome the prediction problem.
As mentioned, reducing the number of scenarios representing
the underlying uncertainty is often essential to finding efficient
numerical solutions. Finding a smaller subset of scenarios
reduces the numerical complexity while keeping the error
at an acceptable level. Therefore, a computationally efficient
methodology is used to tackle the scenario reduction problem.
A clustering method based on the K-means algorithm is used
to partition the scenario sets. Each cluster represents the
scenario that best mirrors the conditional objective values for
that specific operational condition. Four scenarios are foreseen
based on the wind speed distribution to cover all the wind
turbine operating regions gradually. The wind speed is above
the rated value in the fourth scenario ω4. Therefore, the
surplus power is consumed by the formic acid plant, which

Figure 7: Wind speed and grid frequency day-ahead prediction.

results in further CO2 capture. In the first scenario ω1, wind
power is less than half of the maximum capacity of the
chemical process. In the second and third scenarios ω2 and
ω3, the wind speed is below the rated value and above the
maximum capacity of the chemical process. Furthermore, the
grid frequency situation can be determined by estimating the
mean frequency on a quarter-hourly basis depending on the
TSO’s penalty mechanism. The K-means algorithm is also
used for finding the grid frequency mean value considering
the density of data points located below or above nominal
frequency. Fig 6 shows an example of the grid frequency that
seems to be occurring below the nominal value, where the
average of the central clusters outside the dead-band zone is
49.985 Hz. Fig. 7 also reveals the results of the wind speed
and grid frequency prediction using historical datasets over
five years, i.e., from January 2015 till December 2019. The
Mean, Root Mean Square Error (RMSE), Mean Square Error
(MSE), and Standard Deviation (SD) of the absolute errors are
the evaluation metrics used for assessing the results.

B. Stochastic optimization

The bidding decision variables of electricity P sch
e and

reserve P sch
r are defined as first-stage decision variables. These

should be scheduled in the day-ahead market. The decision
variables related to formic acid production psch

Fa , electricity
and reserve commitments, Pe(ω) and Pr(ω) respectively, are
defined as second-stage variables. The decision-maker does
not need to select the formic acid production schedule in the
day-ahead but can take advantage of the plant’s flexibility
to optimize the baseload of formic acid production pFa(ω)
according to the different wind speed scenarios that may occur.
Therefore, the two-stage stochastic optimization model and its
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constraints are formulated, based on the above considerations,
as follows:

max


(
P sch

e · λsch
e + P sch

r · λsch
r
)

· ∆T+

Eω

(
g(pFa(ω)) · λFa+
(∆Pe(ω) · λ∆e + ∆Pr(ω) · λ∆r) · ∆T

) (11)

∆Pe(ω) · λ∆e = ∆P +
e (ω) · λ+

∆e − ∆P −
e (ω) · λ−

∆e (12)

Pω = 2 · Pwt (13)

∆Pr(ω) · λ∆r = ∆P +
r (ω) · λ+

∆r − ∆P −
r (ω) · λ−

∆r (14)

P sch
r = 200mHz · K (K is droop constant) (15)

Pr(ω) = ∆f · K (16)

∆f = fe − fref (fref is 50 Hz) (17)

where λsch
e , λsch

r and λFa are the electricity, reserve and formic
acid prices respectively. Eω is the probability of scenario ω.
∆Pe

+(ω), ∆Pe
−(ω), ∆Pr

+(ω) and ∆Pe
+(ω) are additional

and deficiency of power injection to the grid and reserve
provision. λ−

∆e, λ+
∆e, λ−

∆r and λ+
∆r are revenue and penalty

for additional power and reserve injected to the grid as well.
The optimization will be carried out for 24 hours considering
market parameters with quarter-hourly basis. ∆T is the time
interval for electricity injection and frequency regulation, i.e.
15 minutes. The TSO has different mechanisms to penalize
electricity and reserve providers if they violate their scheduled
electricity and reserve contributions based on the contracted
agreement. In this study, it has been assumed that electricity
production can be addressed in the framework of a Balance
Responsible Party (BRP). Therefore, the imbalance in energy
settlement takes place in real-time on a quarter-hourly basis.
Consequently, the energy provider gets a reduced revenue
and penalty for its positive and negative deviation at each
settlement course when the generated power is higher than
the scheduled power as follows:

λ+
∆e = λsch

e − α (18)

λ−
∆e = λsch

e + α (19)

where α is an additional incentive component, which depends
on the average of the absolute values of the System Imbalance
(SI) of the current and the previous imbalance settlement
period. α can be expressed by an S-shaped curve that rises
rapidly until 200 C/MWh and then saturates at the maximum
value of 200 C/MWh [42]. Moreover, based on the Balancing
Service Provider (BSP) contract, the BSP must activate auto-
matically (without intervention) the FCR Requested with the
penalties for FCR missing MW on a quarter-hourly basis as
follows:

λ−
∆r = 0.2 · β · λM

r ; λ+
∆r = 0 (20)

β = P sch
r − Pr

P sch
r

(21)

where β is the failure factor, which increases by the differ-
ence between the scheduled FCR and the activated one, i.e.
Pr. λM

r is the total remuneration for the FCR awarded for
month M [43]. Also, the penalty of missing time for FCR

provision (delaying in reserve activation) can be calculated
on a monthly basis. However, this penalty is not considered
in this optimization problem as the proposed control system
acts immediately to the frequency deviations (varying every
10 s) and does not technically/intentionally postpone the FCR
activation.

In the first and second stage of the optimization, the
objective function (11) is subject to the following boundary
conditions:
s.t. (first stage)

0 ⩽ P sch
e ⩽ P max

ω (22)

0 ⩽ P sch
r ⩽

P max
Fa − P min

Fa
2 (23)

The constraint (22) limits the contribution of electricity to
the available wind energy. The constraint (23) restricts the
symmetric upward and downward scheduled power reserve
to the formic acid minimum and maximum capacity (i) to
guarantee the continuous operation of the electrolyzer, and (ii)
to avoid any start-up and shut-down time required to purge the
nitrogen.
s.t. (second stage)

P min
Fa ⩽ P opr

Fa (ω) ⩽ Pω (24)

P opr
Fa = Pω − Pe(ω) − Pr(ω) if 49.8 ⩽ fe ⩽ 49.99 (25)

P opr
Fa = Pω − Pe(ω) + Pr(ω) if 50.01 ⩽ fe ⩽ 50.2 (26)

0 ⩽ Pe(ω) ⩽ Pω − pFa(ω) (27)

0 ⩽ Pr(ω) ⩽ pFa(ω)
2 (28)

∆P +
e (ω) = Pe(ω) − P sch

e if Pe(ω) > P sch
e (29)

∆P +
r (ω) = Pr(ω) − P sch

r · ∆f if Pr(ω) > P sch
r (30)

∆P −
e (ω) = Pe(ω) − P sch

e if Pe(ω) ⩽ P sch
e (31)

∆P −
r (ω) = Pr(ω) − P sch

r · ∆f if Pr(ω) ⩽ P sch
r (32)

the nonlinear functions Pwt and PFa
opr(ω) and their piece-

wise linearizations are given in (9), (10), (5) and (6), which
are discussed in detail in § II-B and § II-A. The constraint
(24) avoids exceeding the minimum capacity of the plant and
the total available power with the formic acid production.
The constraints (25) and (26) define upward and downward
regulations when the grid frequency drops or goes above
50 Hz, considering the deadband zone. The constraints (27)
and (28) are the limitations for electricity injection and reserve
activation. The constraints (29) to (32) are considered for pe-
nalizing the electricity extra injection/off-takes and over/under
reserve activations based on what was scheduled.
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C. Mixed-integer nonlinear programming problem

It is essential to adopt nonlinear terms to capture specific
operational characteristics of the chemical plant in formulating
the optimization problem. Nevertheless, using nonlinear terms
generally increases computational complexity and time, which
motivates the development of efficient transformation and
linearization approaches. Such linearizations are expected to
decrease the computational complexity and facilitate decision-
making.

The proposed two-stage stochastic optimization is solved us-
ing mixed-integer nonlinear programming (MINLP). Both the
nonlinear function of formic acid (5) and its piecewise form (6)
are considered to investigate the reliability and computational
efficiency of the proposed problem. It is important to note that
binary integer variables used in this problem formulating the
upward and downward regulations are inherently nonconvex.
However, the MINLP solver used in this study combines con-
straint propagation and interval analysis and takes advantage
of the enhanced branch and bound concept for the quadratic
objective function to handle any non-convexity in its search
for globally optimal solutions [44]. Furthermore, fitting a
convex piecewise linear function guarantees finding feasible
solutions for the corresponding original convex nonlinear
subproblem [44]. Accordingly, adding more nodes or segments
challenges neither the convex optimization nor finding the
global optimum but instead increases the accuracy of the
nonlinear approximation and the computational load [45].

In this study, the applied MINLP solver operates based on
a polyhedral branch and bound technique, advanced bound
tightening as well as range reduction strategies to reduce the
search space. It employs local search techniques as primal
heuristics. Moreover, as a standard and widely-used metric
for evaluating approaches that solve combinational optimiza-
tion problems, the optimality gap is estimated. This index,
which gives the relative and absolute distance between an
approximate solution and the optimal solution, is estimated
for nonlinear and piecewise models. The relative and absolute
gaps for the nonlinear function are 9.9×10−10 and 9.4×10−7,
respectively. The same parameters for the piecewise function
are 4.5×10−13 and 4.2×10−10, respectively, which shows the
effectiveness of the proposed models for finding the optimum.

IV. RESULTS

A. The impact of variable wind power on decision making

One of the most critical issues with the bidding strategies
of the flexible demand, integrated with renewable sources, is
the trade-off between the power consumption and the injection
of additional renewable power into the grid. If the decision-
maker offers a too high bidding quantity, it will not satisfy
grid requirements in low wind power scenarios. It will be
subject to penalties, leading to an additional cost. However,
a low bidding quantity of reserve and electricity causes extra
wind power curtailment and declines revenue. Hence, the
optimization criteria proposed in this study guarantee an offer
which is a compromise between an aggressive decision with
a high bidding quantity and a conservative decision with
a low bidding quantity, considering the variability of wind

Figure 8: Wind and grid frequency profile for the first 100
days of 2019.

and grid frequency. Table I gives the optimal allocation of
available wind power to the electricity/reserve markets and
the formic acid production for the proposed and baseline
strategies. No operational flexibility and FCR provision are
considered for the baseline approach, and the available wind
power is only decided to be optimally distributed between
the chemical process and the electricity market. It can be
understood that the proposed strategy suggests almost zero
contribution to the electricity market on an almost windless
day when the wind speed is too low. However, a marginal
reserve contribution is decided since the maximum frequency
deviation rises to 50.122 Hz, and the chemical process can
play a demand response role in consuming excessive supplied
power. Instead, any available wind speed will be allocated
to formic acid production. Thus, there will be a minimum
formic acid production even in the first scenario ω1 when the
average estimated frequency exceeds 50 Hz. This condition
does not happen so often due to some degree of correlation
between wind speed and grid frequency. Nevertheless, for the
following case, i.e. an almost windless day with a wind speed
between 3 and 6 m/s and a maximum frequency deviation
of 49.948 Hz, no reserve is arranged to avoid activation
penalties for the windless condition. Contrarily, a maximum
contribution in electricity and reserve markets will be selected
for windy and extremely windy days. According to Table I, the
results of the proposed optimization problem for an extremely
windy day show an almost equal amount of bids for both
scheduled electricity and reserve. The average wind speed is
above the rated value on a windy day, but it may also drop
for a meaningful period. Therefore, a higher contribution to
the electricity market is suggested to avoid extra penalties of
the reserve that will be asked for activation, especially when
the maximum estimated grid frequency is below 50 Hz. An
even more conservative policy is taken for the day, meeting
variable wind conditions. The results show that the proposed
strategy effectively prioritizes formic acid production based
on available wind power over all the scenarios, and actively
participates in the reserve and electricity market to enhance
the income Z given by (11). At the same time, the baseline
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Table I: Optimal decision for the proposed and baseline strategies in different days, various wind and frequency conditions.

P sch
e P sch

r fe P opr
Fa (ω) (MW) Z,Zb

Days of 2019 Operation mode day a head schedule Hz ω1 ω2 ω3 ω4 euro

Almost windless: vw ≤ 4 m/s Proposed strategy 0 0.33 50.122 0.44 1.48 4.00 0 173.68
Baseline approach 0 No FCR 0.44 1.47 4.00 0 138.94

Windless: 3 m/s ≤ vw ≤ 6 m/s Proposed strategy 0.86 0 49.948 0 2.16 4.95 0 504.57
Baseline approach 1.31 No FCR 0 2.15 4.53 0 408.91

Variable wind: 5 m/s ≤ vw ≤ 25 m/s Proposed strategy 4.68 0.50 50.101 0.57 2.99 4.61 4.92 730.25
Baseline approach 5.54 No FCR 0.57 1.49 4.06 4.45 617.47

Windy: vw ≥ 10 m/s Proposed strategy 4.14 1.01 49.921 0 2.02 4.61 4.84 910.43
Baseline approach 5.64 No FCR 0 3.03 4.06 4.35 768.22

Extremely windy: vw ≥ 12 m/s Proposed strategy 2.26 2.58 49.916 0 0 5.16 5.16 1041.70
Baseline approach 5.62 No FCR 0 0 4.12 4.38 874.511

Figure 9: The two-stage stochastic programming performance
for the first 100 days of 2019.

approach only guarantees the optimal base-load of formic acid
production and relatively increases the electricity market share
by rising wind speed up to the rated power (10 MW).

Fig. 8 shows the wind and grid frequency variations for
the first 100 days of 2019. Fig. 9 also shows the performance
of the two-stage stochastic programming for the same wind
and frequency situation when the prices mentioned above are
competitive, and the decision maker is willing to participate
in all the markets. It shows that whenever the wind speed
is above the rated value (11.9 m/s), the maximum reserve
bidding quantity is decided, which is half of the maximum
capacity of the formic acid process, around 2.60 MW, to
satisfy the symmetric (upward and downward) FCR. However,
the priority is to produce formic acid when wind speed is
expected to drop significantly. For the expected unstable wind
and variable frequency conditions, the preference is to offer
a higher electricity contribution to avoid FCR penalties in
low wind speed events. Also, in Fig. 9, the total income
considering the proposed operational strategy is compared
with the baseline strategy, where no flexibility and reserve
contribution is supported, and the wind power is only allocated
to the chemical process and the electricity market. The average
revenue is increased for the proposed strategy compared to the
baseline approach as a result of the offered flexibility and FCR
provision, especially in above-rated wind speeds.

B. Economic efficiency

Although the primary goal of the proposed two-stage
stochastic programming is to deal with wind power uncer-
tainty, the optimization’s parameters are set to obtain the max-
imum sensitivity to electricity, reserve and formic acid prices.
Fig. 10 compares the economic efficiency of the proposed
model for two pricing conditions with the same wind and grid
frequency profiles shown in Fig. 8. First, when the reserve
price is much lower than the electricity price (λsch

r ≪ λsch
e )

and second, when the reserve price is competitive to the
electricity price (λsch

r ≥ λsch
e ). The first pricing condition

represents the lowest reserve price according to market prices
in 2019, and the second pricing condition is more likely to
happen in the future of power systems without conventional
plants. It can be witnessed that in the first pricing condition,
lower economic efficiency is achieved because the stochastic
programming does not suggest contribution to the reserve
market, except for a couple of days, i.e. between days 80 and
90, where the grid frequency is foreseen to go above 50 Hz.
The economic efficiency improvement EE is defined by:

EE = Z(λsch
r ≫ λsch

e ) − Z(λsch
r ≪ λsch

e )
Zb

× 100 (33)

where Zb is the calculated income for a baseload operational
strategy .The estimation of EE shows the degree of freedom
of the decision-maker and explains up to what level he
contributes to the reserve market based on reserve prices.

Figure 10: Economic efficiency (right axis in percentage)
considering two optimal scheduled reserve quantities (left axis
in MW) with two pricing scenarios (yellow and pink).
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Figure 11: Dynamic performance under varying wind condi-
tions and grid frequency changes. Figures from top to bottom
illustrate wind and frequency profiles, Pg(ω) total injected
electricity and reserve power to the grid, power consumption of
the CCU plant, and the reactor inlet pressure and temperature.

C. Dynamic performance analysis

The performance of the proposed control scheme needs to
be evaluated in extreme cases to ensure the reliability and
efficiency of the proposed operational strategy. Therefore, a
dynamic simulation is carried out in varying wind conditions
between 4 to 20 m/s with significant turbulence (>17%). Also,
the used grid frequency profile contains data points both above
and below 50 Hz, and requests upward and downward FCR for
900 s. Fig. 11 shows the dynamic simulation results, including
the sum of the injected power to the grid (electricity and
reserve activation) and the chemical plant operating power
with the reactor inlet pressure and temperature. Although an
extremely variable wind speed profile is considered, which
drops to very low wind speeds rapidly, the proposed control
system is able to regulate the compressors rotational speed,
the reactor inlet temperature and the pressure. Also, it keeps
the power consumption in the recommended range of 3 to

Figure 12: The compressor performance at the CO2 compres-
sion stage on the efficiency map.

5.7 MW. The proposed stochastic programming schedules
the contribution of 4.68 MW and 0.5 MW to the electricity
and reserve markets for such wind and frequency scenarios.
However, there will be deviations from the scheduled power
(maximum deviation is 1.57 MW) due to insufficient available
wind power, which is inevitable but still economically feasible
based on the penalty mechanism. If the TSO considers higher
penalties for less severe violations, the stochastic program-
ming offers lower contributions to avoid extreme deviations
accordingly.
Fig. 12 also illustrates the compressor’s dynamic performance
at the CO2 compression stage. The first compressor in the
CO2 stream is responsible for adjusting the CO2 flow rate
such that the required CO2/H2 ratio is maintained at the
reactor while supplying the desired discharge pressure. As
indicated, the CO2 and H2 flow rate ratio is kept consistent at
the desired level, and the discharge pressure is maintained at
a nearly constant level despite the variations in hydrogen pro-
duction. Surge and stall operation are actively avoided by the
control algorithm. The other four compressors follow the first
compressor discharge flow rate to ensure the output pressures
will be at the permitted level. It is also recommended that
the compressors’ sizing should be appropriately determined
by the equipment sizing in the planning phase, ensuring high
efficiency for the expected varying operational conditions.
Both the proposed control systems and the optimization algo-
rithm contain means to ensure safe operation, i.e., saturation
of signals within safe limits, rate limiters to avoid extreme
dynamics, and boundary conditions in the optimization. Upon
practical implementation, these can all be configured to ensure
safe operation. Nevertheless, the mentioned limitations and
dynamic behaviour of the reactor need to be considered in
the equipment sizing and/or an auxiliary storage tank can be
required.

V. CONCLUSIONS

In this study, a two-stage stochastic programming model
considering wind power uncertainty is employed to investigate
an optimal Collaborative flexible operation of a CCU-based
chemical process as an energy-intensive industrial load with
wind power. Although demand and renewable sources are
envisioned to play an essential role in the ancillary market,
offering grid balancing services in a collaborative procedure
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is not yet well explored. Therefore, this paper suggests a
decision-making algorithm, which guarantees an optimal bid-
ding strategy for the hybrid system consisting of a CCU-based
process and two wind turbines, participating in the day-ahead
electricity and reserve markets. The dynamic modeling of the
subsystems and the proposed architecture of the chemical plant
are presented in detail, and their piecewise linearization is used
in the optimization algorithm. The proposed algorithm is not
limited by period spans and can be applied to other markets as
well, e.g., the intra-day market. Instead of generating hundreds
of scenarios that can make the optimization computationally
expensive, the GMDH algorithm is used as a deep learning
time-series prediction tool for forecasting wind speed and grid
frequency in a day ahead. Accordingly, four wind scenarios
are considered that can particularly impact the optimal bidding
strategy. The results show the significance of the proposed
stochastic programming to find an optimal decision for the
bidding strategy and the formic acid production. This approach
ensures sufficient carbon-dioxide capture and an optimal pro-
vision of FCR as vital elements towards decarbonizing the
grid.
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J. Gumiel, Ángel Martı́n, and M. D. Bermejo, “Simultaneous
formic acid production by hydrothermal CO2 reduction and biomass
derivatives conversion in a continuous reactor,” Chemical Engineering
Journal, vol. 453, p. 139741, 2023. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1385894722052202

[26] A. W. Dowling and V. M. Zavala, “Economic opportunities for industrial
systems from frequency regulation markets,” Computers and Chemical
Engineering, vol. 114, pp. 254–264, 2018, fOCAPO/CPC 2017.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S009813541730323X

[27] “Establishing a guideline on electricity transmission system operation,”
2017, URL: https://eur-lex.europa.eu/.

[28] K. Lebling, H. Leslie-Bole, Z. Byrum, and
E. Bridgwater. 6 things to know about direct
air capture. [Online]. Available: https://www.wri.org/insights/
direct-air-capture-resource-considerations-and-costs-carbon-removal

[29] K. Park, G. H. Gunasekar, S.-H. Kim, H. Park, S. Kim, K. Park, K.-D.
Jung, and S. Yoon, “CO2 hydrogenation to formic acid over hetero-
genized ruthenium catalysts using a fixed bed reactor with separation
units,” Green Chemistry, vol. 22, no. 5, pp. 1639–1649, 2020.

[30] Q. Wang, S. Santos, C. A. Urbina-Blanco, W. Y. Hernández, M. Impéror-
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