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Abstract—Assessing the overall condition of wind turbines
in operation is challenging due to their intricate nature. This
becomes even more complicated when wind turbines provide
ancillary services and respond to grid requirements under curtail-
ment modes. Multiple models are required to effectively evaluate
the wind turbines’ healthy condition, which can be unmanageable
and impractical, particularly for large-scale wind farms. This
article proposes a novel hybrid physics-based deep learning
framework to accurately approximate the time-varying corre-
lation between control sequences and system response, reflecting
the aerodynamic nonlinearity of the 5-megawatt offshore wind
turbine model, designed and tested by the National Renewable
Energy Laboratory (NREL). Another layer of this study’s novelty
relies on proposing a computationally efficient weakly supervised
method that uses the hybrid structure to detect degradations
and anomalies considering curtailment operation. Then, a self-
learning classification approach is employed to iteratively update
the best-tuned classifier, dynamically learning unforeseen abnor-
malities from brand-new anomalies during active operations.
The proposed anomaly detection strategy deals with system
uncertainties, such as wind stochasticity, power curve variations,
and different sparsity levels in the datasets. The results of the
proposed approach show promise in improving health monitoring
performance, leading to a more efficient and accurate assessment
of the overall condition of wind turbines.

Index Terms—WT, frequency containment reserve (FCR),
anomaly detection, hybrid models, adaptive neuro-fuzzy inference
system (ANFIS), long short-term memory (LSTM), support
vector machine (SVM), temporal convolutional network (TCN).

I. INTRODUCTION

W ITH the growing number of wind energy conversion
systems, ensuring reliable operation that considers grid

balancing provision through ancillary services while lowering
maintenance costs and reducing downtime is necessary. How-
ever, wind turbines (WTs) are complicated systems containing
multiple subsystems. Anomalies and faults can occur due to
various factors, leading to failure. Therefore, it is crucial to
have a condition monitoring system (CMS) that can detect
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these issues early on to improve the system’s reliability and
to lower the Levelized Cost Of Energy (LCOE) [1].

The fast development of big data techniques plays an
evolutionary role in WT Health monitoring and predictive
maintenance strategies. In recent years, there has been a signif-
icant amount of research interest in monitoring the conditions
of WTs using hybrid modeling, measured data, and deep
learning methods to carry out a wide range of tasks, from
detecting WT anomalies [1], [2], gearbox fault diagnosis [3]–
[7], blade icing detection [8], [9], and predicting failures [10]
to estimating components remaining useful life [11]–[14].

Among the latest studies, some efforts aim to extract high-
level features from data, obviating the need for specialized
domain knowledge. In [15], a deep learning classifier for
WT gearboxes employs a stacked auto-encoder. Similarly,
[16] uses an adaptive algorithm to capture evolving sensor
weights for WT health assessment. In [17], an interactive
spatiotemporal model extracts features, while [18] introduces
an adaptive gated attention mechanism for fault feature extrac-
tion. Nevertheless, emphasis is placed on achieving accurate
modeling, given the intricate and aerodynamic nature of WT
data connections to unveil hidden nonlinear patterns, ensuring
an overall recognition of rapidly altering operating conditions,
i.e., maximum power point tracking (MPPT) mode, power
regulation, and the transitions zone, and improving the overall
effectiveness of WT condition monitoring, fault diagnosis, and
lifetime prognosis [19].

Data-driven methods and sensor data analytics are powerful
tools to mirror and predict the system performance [20].
A machine learning-based surrogate structure as a virtual
model and a proxy to the actual high-fidelity model of an
existing system can emulate the behavior of a physical system
depending on the entity’s design and operation. [21] proposes
using a surrogate model to calculate extreme WT tower
loads using various signals and a suitable simulation tool.
Also, surrogate models based on polynomial chaos expansion
(PCE) and Kriging are suggested in [22] to approximate
WT fatigue loads. Long short-term memory (LSTM) is a
recurrent neural network (RNN) that is often used in WT
surrogate modeling due to its ability to capture temporal
dependencies and sequential patterns in time series data, which
is common in WT operational data [23], [24]. Another
robust and effective method to estimate the nonlinear be-
havior of dynamical operations is the adaptive neuro-fuzzy
inference system (ANFIS), which enables expressing uncertain
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circumstances in the form of rules by using the (if-then)
decision-making mechanism [25]. ANFIS and fuzzy logic
approaches can show superior performance, short execution
time, and accuracy, especially in WT applications that possess
stochastic aerodynamic characteristics [26]–[29]. Introducing
a convolutional neural network (CNN) has broadened the pos-
sibilities for time series prediction methods and made them no
longer limited to RNNs. CNNs offer the advantage of parallel
processing and the ability to expand their receptive fields.
This capability allows CNNs to access a more comprehensive
historical context, potentially mitigating issues associated with
long-term dependencies. The temporal convolutional network
(TCN) represents an advanced refinement of the CNN archi-
tecture. It does so by employing dilated causal convolutions
to uncover important historical information [30]. Interestingly,
enlarging the receptive field using dilated causal convolutions
results in only a minor increase in the network’s layer count
and parameter complexity. As a result, TCN excels in the
domain of time series prediction, surpassing the predictive
capabilities of standard CNNs [30]. Promising outcomes of
TCN in predictive tasks, such as predicting the RUL of rotating
machinery and forecasting wind speed intervals for WTs, are
discussed in [14], [31], [32].

The Transformer model is another deep learning architec-
ture, which recently has become very popular due to its effec-
tiveness in capturing long-range dependencies in sequences
[33], [34]. The attention-based transformer model addresses
some of the limitations of recurrent and convolutional neural
networks in handling sequential data and is recently developed
for remaining useful life (RUL) estimation approaches [35].
However, despite the mentioned benefits of Transformers, their
adoption for real-time inference is hindered by demanding
computational requirements [36]. This complexity in deploy-
ment poses a notable challenge for practical applications where
data might be limited.

Nevertheless, applying pure data-driven techniques to WT
modeling faces significant limitations, emerging from insuffi-
cient data quality and quantity of vital parameters like wind
and rotor speed, power, and control performance metrics [37].
By juxtaposing power predictions with real-time data and
combining physics-based and data-driven methods, a compre-
hensive and accurate representation of the turbine’s behav-
ior can result in successful flag-up deviations, particularly
in scenarios involving stochastic processes or varying grid
conditions. However, the current hybrid methods often focus
on limited parameters and elements, solely on key components
such as the gearbox, the generator, blade bearings, or power
quality [38]. Furthermore, power prediction within WTs plays
a pivotal role in wind energy management and power fore-
casting. When combined with data analysis and monitoring
methods, this predictive capacity not only aids energy gener-
ation management and grid integration but also facilitates the
detection and diagnosis of significant powertrain degradation
and failures [38]. On the other hand, accurate modeling and a
standalone condition monitoring system (CMS) for the entire
WT can be costly, requiring extra investments [1]. While
significant progress has been made through these techniques, a
comprehensive evaluation of the entire WT is often challeng-

ing to attain [1], [39]. The issue becomes even more complex
when the selected monitoring indicator fails to detect the fault
signatures, as these could be masked by the condition parame-
ters of another component or different operating policies, such
as power degradation related to the Frequency Containment
Reserve (FCR) provision [40], which has not been taken into
consideration in the previous studies. Multiple models have
been produced due to various studies attempting to tackle the
issue by combining various methods that increase the system’s
complexities. However, they are found to be less efficient and
more costly to manage, particularly in large floating offshore
wind farms [41]. This underscores the need for an integrated
approach that comprehensively addresses the intricacies and
challenges of WT health assessment and condition monitoring.

This study addresses three key challenges that hinder a
comprehensive evaluation of WT performance. Firstly, ex-
isting methods focusing on single turbine components fail
to provide an overall performance assessment, disregarding
complex interdependencies within the system [38]. Secondly,
managing multiple models for different aspects of performance
is often inefficient and computationally expensive [1]. Thirdly,
the impact of WT curtailment operations on system health for
grid balancing purposes is often overlooked [42]. To bridge
these gaps, we propose a hybrid framework that predicts the
WT overall performance by coupling physical equations rep-
resenting the estimation of controlled parameters responding
to various operating conditions and a deep learning surrogate
model predicting WT aerodynamic behavior, allowing a more
accurate reflection of healthy behavior. We explored the pre-
dictive capabilities of three different deep learning approaches
commonly discussed in literature, i.e., ANFIS, LSTM, and
TCN, ensuring the surrogate model’s accuracy and compu-
tational efficiency. Throughout our investigation, we aimed
to highlight the distinctive characteristics of each method,
shedding light on their performance differences. This study
particularly addresses the third gap by explicitly considering
curtailment-related degradation that can be falsely detected as
performance degradation or any other anomalies. Additionally,
we employed a weakly supervised approach using limited la-
beled faulty data to address the challenges posed by supervised
and unsupervised methods and their requirements of extensive
labeled data, which are not always practically available [37],
[43].
The key contributions of this article can be outlined as follows:

• A hybrid framework is proposed that accurately predicts
the WT’s overall healthy performance by approximat-
ing the electrical power and rotational speed, not only
considering the stochastic nature of wind speed but also
complex correlations between control sequences of pitch-
generator torque and system response in turbulent wind.
These parameters are physically described and integrated
into a deep learning surrogate model to effectively capture
the system’s nonlinearities across various stochastic con-
ditions and operational modes. Employing the proposed
hybrid structure facilitates anomaly detection by distin-
guishing between normal and abnormal states, indicating
deviations (residuals).
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• A self-learned classification approach with an iterative
framework is investigated that improves the classifier’s
performance by dynamically updating newly labeled
anomalies from former successful classifications. Support
Vector Machines (SVMs) are employed for classifying
the faultiness and degradation, incorporating coherent
features that can be extracted from the plant’s main
observables, i.e., electrical power, and rotational speed,
in time and frequency domains for seamless integration
into the system’s condition indicators.

• This study also considers a wide range of anomalies
and degradation scenarios, including degradation due
to a curtailment operation providing FCR, blade pitch
control failure, yaw misalignment, and Permanent Mag-
net Synchronous Generator (PMSG) abnormalities. The
suggested approach addresses the intricacies and inter-
dependencies present in WT performance under varying
grid requirements and operating conditions. The method-
ology’s validation was performed on a realistic 5MW
offshore floating WT using the NREL FAST software.
This simulation integrates detailed models of the WT’s
nonlinear aerodynamics, providing a realistic environ-
ment for comprehensive assessment.

This article is organized as follows: Section II discusses
the hybrid physics-based deep learning structure. Section III
describes the proposed condition monitoring approach. The
performance assessment, data, simulations, and results are
presented in Section IV. Finally, in Section V, the findings
are discussed, and conclusions are drawn.

II. HYBRID PHYSICS-BASED DEEP LEARNING MODEL

A. Underlying WT physical system

This study employs a 5MW offshore WT with variable
blade-pitch-to-feather configuration and an operational control
approach based on power-production regulation using pitch
and torque control systems. To accurately model the behav-
ior of the WT, each subsystem is described and modeled
separately. This involves developing a detailed model of the
aerodynamics, control system, and electrical characteristics of
the Permanent Magnet Synchronous Generator (PMSG). These
models are then integrated into a closed-loop system to study
WT’s dynamic behavior in various operating conditions.

1) Dynamic model: To investigate the dynamic behavior
of WTs, the study employs TurbSim to generate time series
data for the three Cartesian wind components within a di-
mensional grid. This data is generated based on statistical
models, effectively simulating the full-field wind speed dis-
tribution. Subsequently, the generated wind data undergoes
analysis to assess its spectral and coherence properties in the
frequency domain. By applying an inverse Fourier transform,
the data is transformed into wind speed time series, a crucial
preparatory step for its integration into the time domain-
oriented FAST simulation tool. This comprehensive approach
ensures the faithful representation of wind conditions, ulti-
mately facilitating a robust exploration of WT dynamics and
performance [44], [45]. The WT captures a total amount of

 

Figure 1: Nonlinear mapping between wind speed, WT gen-
erator torque, blade pitch angle, and rotational speed.

mechanical power Pm, and the mechanical torque Tm of the
WT can be described using the following relationships:

Pm = Av3Cp(λ, θ), A =
1

2
ρπR2, (1)

Tm = Av3Cp(λ, θ) ·
1

ωr
, (2)

where Cp represents the power coefficient, ρ is the air density,
R denotes the blade length and θ is the pitch angle. The
tip-speed ratio λ = ωrR/ v is a function of wind v and
rotational speed ωr. FAST implements the Blade Element
Momentum (BEM) theory and simulates the nonlinear equa-
tions of motion. It also determines the WT’s aerodynamic and
structural response to wind-inflow conditions in time, which is
advantageous for developing control designs and analysis [46].

2) Generator: The dynamic equivalent model of the PMSG
can be formulated in the q,d rotating reference frame:

Vd = RsId + Ld
dId
dt
−NpωrLqIq, (3)

Vq = RsIq + Lq
dIq
dt

+Npωr(LdId +Φm), (4)

where Rs is the stator-winding resistance, Ld and Lq are the d-
axis and q-axis stator-inductances and Φm is the flux linkage.
Vd and Id are the d-axis stator voltage and current. Vq and Iq
are the q-axis stator voltage and current. Np is the number of
pole pairs. The generator torque and electrical power can be
formulated as follows:

Tg =
3

2
NP (ΦmIq + (Ld − Lq)IdIq) , (5)

Pe =
3

2
[VdId + VsqIsq]. (6)

The WT system’s equation of mechanical motion is formulated
as follows:

Tm − Tg = J · dωr

dt
+Bf · ωr, (7)

where, J represents the overall moment of inertia, while Bf

denotes the coefficient associated with viscous friction. The
machine’s realistic dynamics and losses, including machine
inductances, the armature reaction effect, stator winding cop-
per losses, and iron core losses, are considered and included
in the efficiency curve as proposed in [47].
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Figure 2: a) WT optimal power coefficient for normal opera-
tion. b) WT power modification for curtailed operation.

3) Control system and FCR provision: The WT control
design includes two main controllers: a generator-torque con-
troller and a full-span rotor-collective blade-pitch controller.
These controllers operate across all operational regions. In
wind speeds below the rated level, the pitch angle is set at
zero degrees, and the torque controller optimally maximizes
wind power extraction by keeping λ and consequently Cp at
the optimal level, which is Copt

p = 0.482 and λopt = 7.55
respectively. Conversely, for wind speeds above the rated level,
the pitch controller maintains rotational speed using a gain-
scheduled PI controller. In this operating region, there is no
rotor acceleration by applying a rated generator torque Tg−equ

that cancels the aerodynamic torques at equilibrium. Figure
1 illustrates the nonlinear relationships among wind speed,
generator torque, blade pitch angle, and rotational speed. The
pitch controller adapts to the nonlinear aerodynamic charac-
teristics at different operating points, as determined through
linearization analysis in FAST. The control system includes a
transition zone between partial and full load to ensure a smooth
transition between maximum power point tracking and power
regulation. The pitch angle θ can be approximated considering
the pitch control proportional Kp and integral Ki, to keep the
rotational speed at the rated value ωref :

θ ≈ θref = Kpδωr +Ki

∫ t

0

δωrdt, (8)

δωr = ωref − ωr, (9)

where, ωref is the rated rotational speed of 12.1 rpm for 5MW
offshore WT. The proportional Kp and integral Ki scheduled
gains that are calculated by multiplying the gain correction
factor GK(β) = 1

1+β/βK
to constant values, considering the

aerodynamic pitch sensitivity of WT δP/δβ [46]. Moreover,
the control system also governs the yaw angle during normal
operation, ensuring the nacelle remains aligned with the wind
direction. This dynamic adjustment minimizes mechanical
stress, enhances energy output, and mitigates potential damage
from extreme wind conditions. In curtailment mode, WTs
are intentionally operated at less than their maximum power
output capacity. In curtailment mode, a power reserve is
needed to let the WT respond to grid frequency variations with
primary control architecture[48]. This means that the turbine’s
blades and generator torque are adjusted to capture less energy
from the wind than they would at their optimal operating

conditions. The power coefficient in curtailment mode Ccur
p

would generally be lower than the optimal power coefficient
Copt

p in full-healthy operating mode by applying a deloaded
factor β (in percentage) that determines WT contribution in
FCR market, which can be formulated as follows:

Ccur
p = β · Copt

P . (10)

Fig.2a shows WT optimal power coefficient in relationship
with tip speed ratio and blade pitch angle. To let the WT
respond to grid frequency variations, a supplementary FCR
control loop is used, and the rotor speed-power lookup table
is modified by shifting the WT’s operating point to the
right side of the Maximum Power Point Tracking (MPPT)
curve [49]. The curtailed operation lets the WT to regulate the
deloaded power P dl, considering the adjustment of rated rotor
speed in deloading mode (δωdl

r = αωref − ωr), applying the
deloaded generator torque T dl

g−equ. Figure 2b shows WT power
modification for curtailed operation as discussed in [48]. The
WT overspeeding factor α ensures sufficient reserve at sub-
optimal performance while enabling the WT to respond to
grid frequency variations ∆f proportionally, even when wind
speed is at the below-rated value.

B. Hybrid framework
Recently, a robust baseline approach has been suggested

in literature that leverages a predictive model and estimates
a healthy power curve, achieving a normal behavior model
(NBM) based on measured wind speeds for assessing the
overall health condition of the entire WT [1]. However, several
abnormalities can induce similar degradation impacts on the
power curve while impacting rotational speed differently. For
instance, increasing and decreasing rotor speed above or below
rated wind speed has the same electrical power degradation
effect. Therefore, yaw misalignment in below-rated wind con-
ditions can be misinterpreted as curtailment degradation if we
only consider the power cure prediction. However, observing
the rotational speed more accurately indicates the related
deviation. This is mainly because in yaw misalignment the
rotor speed drops below the MPPT curve, while it will be
moved to above the MPPT curve for curtailment reasons to
avoid losing kinetic energy that can be used for supporting
inertial response [48].

On the other hand, PMSG abnormalities are more evident
by observing the electrical power, and they have less impact on
the WT’s rotational speed. Therefore, in the proposed hybrid
framework, we suggest closely monitoring both the WT power
and rotational speed to evaluate the overall performance of
the WT in different operating conditions. Additionally, the
proposed architecture aims to approximate the time-varying
correlation between control inputs and system response while
ensuring the process dynamics are enforced within the net-
work. The baseline approach only considers wind speed as the
main independent input. However, the mentioned controlled
parameters can directly impact the aerodynamic nonlinearity
of the system. They can be estimated by governing physical
equations that provide the pitch and generator torque signals
based on the central independent input, wind speed, and rota-
tional speed as a feedback signal. The mathematical equations
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Figure 3: Proposed hybrid framework.

are adjusted to respond to wind speed variations, and the active
power, which should be decided according to the power grid
fluctuations at the supplementary FCR control loop. Then, a
nonlinear mapping of multiple inputs, i.e., wind speed, blade
pitch angle, and generator torque, into multiple outputs, i.e.,
rotor speed and mechanical power, is carried out by training
a deep learning surrogate model, using a data-set gathered
offline in various possible operating conditions.

Figure 3 presents the suggested hybrid framework alongside
a black-box data-driven model. The baseline balck-box model
predominantly relies on wind speed as its main input and is
commonly studied in the literature as a benchmark for pre-
dicting WT power curve [50]. The hybrid model, on the other
hand, goes a step further by estimating pitch and generator
torque both below and above the rated wind speed, utilizing
wind and rotor speed estimations. Subsequently, it predicts the
aerodynamic behavior of the WT by establishing a relationship
between healthy control parameters and wind speed.

In the following subsection, we go into the methodological
aspects of the applied deep learning surrogate model and the
structure design of ANFIS, LSTM, and TCN as the three
potential networks with strong abilities to learn nonlinear
behavior with stochastic and fast dynamic characteristics.
This exploration will provide a deeper understanding of their
mechanism and their respective applications in the discussed
hybrid model. Furthermore, we will conduct a comprehensive
assessment to evaluate and compare the effectiveness and
practicality of these deep-learning approaches in accurately
capturing the intricate nonlinearities inherent in the WT.

C. Structure of the surrogate models

1) Adaptive neuro-fuzzy inference system (ANFIS): A hy-
brid learning algorithm of both the least-squares method and
backpropagation learning is used to train the network and
optimize the parameters of a fuzzy model capable of han-
dling both quantitative and qualitative criteria. The nonlinear
mapping is carried out using the Takagi–Sugeno inference

model employing fuzzy if-then rules [26], [29], [51]. In
the fuzzification layer of the ANFIS structure, the Gaussian
Membership Functions (MF) of the crisp inputs are created
by:

µAi(Tg), µBj (v), µCk
(θ), i, j, k = 1, ..., n, (11)

µx = e−(x−
ai
bi )

2

, (12)

where µAi
, µBj

and µCk
are the MFs of fuzzy sets, which have

a Gaussian form characterized by the variance ai and center
bi of the MF. In the rule layer, each node output is denoted
by the fuzzy inference system representing the firing strength
of a rule Wp, which is calculated by the multiplication of
incoming signals (12). The purpose of the normalization layer
is to normalize the weight function using (13).

Wp


µAi

(Tg) · µBj
(v),

µBj
(v) · µCk

(θ),

µAi
(Tg) · µCk

(θ),

i, j, k = 1, ..., n, (13)

W̄p =
Wp

ΣWp
, p = 1, ...,m. (14)

In the defuzzification layer, the output of nodes will be defined
as the product of first order polynomials fp and normalized
firing strength W̄p, where fp represents the fuzzy If–then rules:

R1 : IfTg = An andv = Bn,Thenfn = αnTg + βnv + rn,

R2 : If v = Bn andθ = Cn,Thenfm = βnv + γnθ + rn ,

R3 : IfTg = An andθ = Cn,Thenfm = αnv + γnθ + rn ,

where {α, β, γ, r} is the resultant attribute set, which belongs
to each node. Finally, one node represents the sum layer, which
calculates the total output summation of all arriving signals by:

Y =

m∑
p=1

W̄pfp. (15)

In this study, the Fuzzy C-means (FCM) method is used to
compute the membership degrees, minimizing the following
objective function:

Jq =

N∑
l=1

G∑
s=1

uq
ls∥xl −Gs∥2, 1 < q <∞, (16)

where N is the size of the data set, q is a weighted index, uls

is the degree of membership of xl in the cluster q, which is lth
of d-dimensional measured data. Gs is the d-dimension center
of the cluster. A Genetic Algorithm (GA) is used to find the
optimal weighting exponent q value for the FCM algorithm.
The q value determines the fuzziness degree in the clustering
process and affects the performance. The goal is to partition
the dataset into the desired number of classes and to calculate
the cluster centers and membership degrees that assign data
points to clusters.
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2) Long short-term memory (LSTM) network: The LSTM
network is a Recurrent Neural Network (RNN) based archi-
tecture that has been commonly used for sequence regression-
related application problems, e.g., [52], [53]. The main ad-
vantage of LSTM over standard RNN is that it is able to
capture not only the short-term temporal relations in sequence
but also the long-term relationship. This has been achieved
by its specifically designed network structure, as illustrated in
Fig.4. For a specific LSTM unit, if we denote the input at time
step t as Xt := [vt, Tgt, θt], the flow within the LSTM unit
LSTM : Xt → LSTM(Xt) can be represented as:

f t = σ(W f [ht−1,Xt] + bf ),

it = σ(W i[ht−1,Xt] + bi),

Ĉt = tanh(W Ĉ [ht−1,Xt] + bĈ),

ot = σ(W o[ht−1,Xt] + bo),

Ct = f t ⊙Ct−1 + it ⊙ Ĉt,

ht = ot ⊙ tanh(Ct),

(17)

where σ, tanh represents the sigmoid and tanh activation
functions respectively; W f ,W o,W Ĉ represent the weights
and bf , bi, bĈ , bo denote the biases. [·] represents the con-
catenation operation and ⊙ is the Hadamard product. ot is
the output gate’s activation vector, Ct is the output cell state
and ht is the hidden state that will be provided for t + 1
steps recurrently. Importantly, we remark that Ct is the key

factor that enables capturing long-term patterns. With the
elaborated LSTM unit, in order to increase the flexibility of the
network to capture the potential complex temporal correlations
between the input and output of the surrogate model, we
construct an LSTM-based network architecture illustrated in
Fig.4: the constructed architecture consists of 3 LSTM layers,
with two dense layers afterward. We note that this network
architecture is empirically determined as leading to a satisfying
performance in reality. For input Xt any time steps t, this
architecture has the following output:

ht = LSTM3(LSTM2(LSTM1(Xt))), (18)

yt = Dense2(Dense1(ht)), (19)

where LSTM gives one LSTM layer, Dense := I(Wx + b)
represents one fully connected layer, where the linear activa-
tion function is used. One hundred twenty-eight hidden units
within each LSTM layer are used for the other hyperparameter
of the network. The hidden unit for the first dense layer is 128,
and 3 for the second layer.

To optimize the weights of the proposed LSTM network
architectures, we utilize the mean squared error as the objec-
tive function commonly used in a regression problem. The
Adam optimizer [54] is utilized as a stochastic gradient-based
optimizer. The model is implemented utilizing Keras under
Tensorflow 2, and the parameters are trained with 100 epochs
with a mini-batch size of 250.
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Figure 4: The proposed health monitoring framework using the hybrid model.
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3) Temporal convolutional neural network (TCN): TCN is
a convolutional type neural network. It works similarly to a
standard convolutional neural network while the convolution
operates on the time series. The convolutional kernel can either
be causal (as depicted in Fig. 4), preventing any information
leakage from the future time step, or use these parts of
information if in a feasible scenario. With stacked dilated
convolutions, the model is able to effectively expand the
receptive field of the convolutional network, hence getting
the information from a very long context. More formally,
for a 1-dimensional time series input, and filters defined as
f ∈ {0, . . . , k − 1}, the dilated convolution on an arbitrary
element s of the sequence is defined as:

F (s) =

k−1∑
i=0

f(i) · x(s−d·i) (20)

where the element s will incorporate the information of the
past up to k(d− 1) elements. For a more in-depth description
of the neural network, we refer to the paper [30]. The TCN
network structure to compare in this research consists of 3
stacked TCN layers. The filter size is set to 32, we use a kernel
k with size 3, and a dilation of d = {1, 2, 4, 8, 16, 32, 64} is
utilized. For simplicity, not all hidden layers are shown in the
TCN Structure in Fig. 4. A residual block is utilized (as shown
in Fig. 1.b of [30]). After passing the 3 stacked TCN layers,
a dense layer is set to extract the final output time series. We
follow the same training routine as training LSTM and ANFIS
models.

III. HEALTH MONITORING

This section introduces a health monitoring approach that
utilizes the surrogate models proposed in Section II-C to
assess the current condition of a WT and detect and diagnose
anomalies. Figure 4 outlines the workflow of this approach,
which commences with a data-gathering step that reflects the
WT’s operation under both healthy and faulty conditions. This
step provides the model with measured data for anomaly
detection and performance assessment. Once the surrogate
model is created, the proposed hybrid structure can mimic
the healthy behavior of the system and discern normal and
abnormal behavior from the calculated deviations, i.e., the
residuals. The next step involves using the extracted features
that can be identified and incorporated into the system’s
condition indicators. A classifier is then trained using a small
set of labeled anomaly data. In an iterative process, the
highest-scored anomalies detected will be used to update the
classifier by introducing more faulty sets to the initial dataset
through an automatic or manual labeling method. Additionally,
unknown anomalies (lowest or zero-scored data points) will
be added to the existing library and updated by repeating the
feature extraction and dimension reduction step. Finally, the
classification model is updated using the brand-new archived
dataset from the current operation, considering thresholds and
the uncertainties of prediction errors. This updated model
enables more accurate detection and diagnosis of anomalies
in the system.

Degradation
in the form of

curtailment

Degradation
in the form of

yaw misalignment

MPPT & Power
regulation

Healthy operation
Yaw misalignment
Pitch control failure
PMSG abnormality

Figure 5: Degradation in the form of anomalies/curtailment.

Figure 6: WT operation in abnormal conditions.

A. Anomaly and degradation scenarios

The suggested health monitoring approach is developed and
assessed in various working conditions with different sources
of faultiness, which have a high chance of occurrence and
can be falsely interpreted as normal degradation in deloading
operations with curtailment. As shown in Fig.5, two control
failures, i.e., blade pitch angle and nacelle yaw position error,
are considered, affecting the rotational speed and causing
electrical power degradation in full and partial load regions,
respectively. In this study, the blade pitch failure mode occurs
when one or two blade pitch motor mechanisms fail to respond
to the control signals, lock the blade at a certain position, and
stop creating pitch-angle demands. Yaw misalignment is also
implemented for yaw position errors from 5 to 20° when the
WT is not fully facing the wind. This occurs when the wind
direction changes and the yaw control system fails to orient
the WT rotor towards the wind direction properly.
Moreover, PMSG abnormality is considered to assess the
performance of the proposed condition monitoring approach in
all operating regions. The presence of an electrical disturbance
in the PMSG may occur at any operational condition and may
interrupt or degrade electrical power. Abnormal behavior in
the PMSG is attained by adding nontracked order and random
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Figure 7: Features sorted by their rank.

noise to the back electromotive force (EMF) with a noise
power of 1% to 5% of the EMF voltage and 10ms sample
time. The data in healthy and faulty states are obtained by
running numerous simulations in the incoming flow field with
all operating ranges of wind speed and turbulence intensity
levels of 5% to 15%. Figure 6 reveals the scatter plot of the
WT healthy and 20% curtailed operation (β = 80%) as well
as the mentioned anomalies with boxplots demonstrating the
anomaly locality, distribution, and skewness. The electrical
power degradation is evident in pitch failure and yaw misalign-
ment in full load and partial regions. The PMSG abnormality
subtly impacts the electrical power in all operating regions
compared to the two other anomalies. However, its impact
hardly appears in the rotational speed time-series signal.

B. Feature extraction and dimension reduction

When calculating condition indicators as summary statistics,
it is crucial to consider the system features that differentiate
normal operations from abnormal behaviors, including degra-
dation in the form of curtailment. A good understanding of the
system is necessary to select appropriate condition indicators
in two or multiple dimensions, and some experimentation may
be required. In this study, we analyze several features in both
the time and frequency domains for the electrical power and
rotational speed signals, which can be combined to create
condition indicators that capture the overall ”unusualness”

of the data. The effectiveness of each feature in differen-
tiating normality and abnormality is estimated and ranked
using one-way ANalysis Of VAriance (ANOVA) and Kruskal-
Wallis [55]. Figure 7 shows all the features used in this study,
which are ranked by their importance. This work employs
Principal Component Analysis (PCA) for efficiently reducing
feature dimensions to enhance computational efficiency.

C. Classification

In this study, Support Vector Machines (SVM) are used to
classify the obtained feature vectors, comparing the current
observable value with the corresponding healthy value pro-
vided by the surrogate models. Then faulty conditions are
estimated and the occurred faultiness is identified. Different
kernel functions, which map the input samples into a higher
dimensional space using a nonlinear function ϕ(·) and soft
margin hyperplanes separating the data in the higher dimen-
sional space, are considered. The SVM, in general, solves the
following quadratic optimization problem:

min
W,b,ξ

1

2
∥W∥22 + C

N∑
i=1

ξi

s.t. yi(W
TΦ(xi) + b) ⩾ 1− ξi

, (21)

where (xi, yi) denotes the training set, ξ is the slack variable
that allows the hard margin to be violated, W and b are N-
dimensional vectors, and the offset defines the hyperplane
equation. The parameter C controls the trade-off between
achieving a larger margin and minimizing the number of mis-
classifications. Then, a kernel function k(Xs, X

′
s) is explicitly

defined to calculate the inner product in the image of the
nonlinear mapping function ξ(·). The Gaussian, quadratic, and
cubic kernel functions can be written as follows:

k(Xs, X
′
s) = exp

(
−
∥Xs −X ′

s∥
2
2

2σ

)
, (22)

k(Xs, X
′
s) = 1−

∥Xs −X ′
s∥

2
2

∥Xs −X ′
s∥

2
2 + C

, (23)

k(Xs, X
′
s) = (XT

s X
′
s + 1)3, (24)

where Xs and X ′
s are two arbitrary samples and σ is the

kernel width. Fig.8 illustrates the two-dimensional condition

[t]

Figure 8: Employing the SVM classification on lowest-ranked features.
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indicators and the Gaussian kernel SVM classification per-
formance for the lowest-ranked features, which have complex
distributions. Although the proposed classifier is robust enough
and still able to give appropriate boundaries, it results in local
performance. Therefore, the first ten high-ranked features are
selected to achieve global performance and reduce computa-
tional complexity. The hyperparameters are tuned to find a
hyperplane that separates the data perfectly into faulty and
healthy classes and reduces misclassification errors.

D. Enhancing Classification using surrogate model

Algorithm 1 Anomaly detection using surrogate model

Require: Measured data X , anomaly librery U
1: Create surrogate model M
2: Discriminator: Calculate residuals R̂← (X −M(X))
3: Extract features F : f1, ..., fn from residuals R̂
4: Apply one-way ANOVA to select effective features F
5: Create condition indicators I incorporating features F ′

6: Train SVMint using small set of labeled anomalies A for
faulty scenarios from anomaly library U

7: Applying different kernel functions
8: Optimize SVM hyperparameters for the best kernel
9: while not converged do

10: Calculate anomaly scores S for all data points in X
11: Sort the data points in X based on their corresponding

scores in S in descending order:
SortIndices← argsort(S)

12: Select the r highest-scored anomalies:
H ← {X[SortIndices[i]]}ri=1

13: Augment labeled dataset A with H to obtain A′ :
A′ = A ∪H

14: Update classifier SVMup using A′

15: end while
16: Identify unknown anomalies: Sort the data points in X

based on their corresponding scores in S in ascending
order: SortIndices← argsort(S)

17: Select the r′ lowes-scored anomalies:
L← {X[SortIndices[i]]}r′i=1

18: Add L to the anomaly library U ′ : U ∪ L
19: Update feature space: perform feature extraction and di-

mension reduction on U to obtain reduced feature set F ′

20: Update SVMint hyperparameters
21: Repeat steps 8 to 15
22: return SVMup

The anomaly detection given in algorithm 1 aims to detect
anomalies in measured data by utilizing the hybrid model that
mimics the system behavior. After creating and training the
surrogate model using the offline data, the residuals between
the measured data and the hybrid model’s predictions will
be calculated. Then, features are then extracted from the
residuals, and practical features are selected using one-way
ANOVA. Condition indicators incorporating these features in
the time and frequency domain are created, and an initial
classifier, SVMint, is trained using a small set of labeled
anomalies under different operating conditions. The algorithm

iteratively updates the classifier by selecting and adding the
highest-scored anomalies to the labeled dataset, followed by
retraining the classifier. The anomaly scoring relies on a
distance-based scoring method in which the abnormalities are
characterized by being significantly distant from the majority
of the data points, considering the Euclidean distance metric.
Then, unknown anomalies, identified as the lowest-scored data
points, are added to the anomaly library and undergo feature
extraction and dimension reduction. The SVMint hyperparame-
ters are updated based on the reduced feature set. The iteration
continues until convergence is achieved. The final output is an
updated self-learned classifier, SVMup, capable of accurately
detecting anomalies in the system. In general, the algorithm
aims to improve the strength and effectiveness of the classifier
over time by experiencing more abnormalities. The iterative
nature of the algorithm allows the classifier to learn from
new anomalies selected and added to the labeled dataset in
each iteration. By continuously updating the classifier with
increasing irregularities, it becomes more robust and adaptive
to different types of abnormalities present in the system. This
iterative learning process helps enhance the classifier’s ability
to detect anomalies and improve its overall performance over
time.

IV. SIMULATION RESULTS

A. Prediction accuracy

In order to train the deep learning models, the time-
consuming, computationally expensive simulations are carried
out offline to generate a training dataset for numerous ranges
of mean wind speed and turbulence intensities. The WT
behavior is monitored for 600s in each simulation with a
sampling rate of 100s. The steady-state operation of the WT is
used for the training data. As a result, 894 training datasets are
obtained, each having a length of 55000 samples. In order to
provide a more efficient dataset for model training, each data
sequence is truncated to new sequences, each with a length
of 1000 samples, resulting in an expanded training data set
with 49170 sequences. Finally, the ANFIS, LSTM and TCN
models are trained using 100 epochs. In order to evaluate the
performance of the models, we use another 100 original-length
data as test data to measure the performance of the predictive
model. The prediction results for the baseline black box model
vs. the proposed hybrid physics-based deep learning model are
given in Table I, comparing the employed deep learning meth-
ods, i.e., ANFIS Grid Partitioning (GP), Subtractive Clustering
(SC), Fuzzy C-Means (FCM), optimized FCM using Genetic
Algorithm (GA), LSTM and TCN. The Root Mean Square
Error (RMSE) of both observable predictions, i.e., rotational
speed and electrical power, are quantified as follows:

RMSE =
1

55000

55000∑
t=1


√√√√ 100∑

i=1

(ypredicted − ytarget)
2

.

(25)
The prediction accuracy of the proposed hybrid framework

is validated while separately incorporates three distinct archi-
tectures, i.e., ANFIS, LSTM, and TCN. While, the ANFIS
model excels in handling complex, nonlinear relationships
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Table I: Predicting accuracy of the baseline black box Model vs. proposed hybrid physics-based deep learning model.

Model Prediction Error of ωr (rpm) Prediction Error of Pe (kW) Maximum Inference Time

Baseline Hybrid Baseline Hybrid

ANFIS-GP [29], [51] 0.40 0.1196 139.11 41.7667 0.53 sec
ANFIS-SC [29], [51] 0.38 0.1263 137.47 42.6894 0.14 sec

ANFIS-FCM [29], [51] 0.38 0.1321 134.11 45.3367 0.14 sec
ANFIS-FCM/GA [29], [51] 0.31 0.0891 97.15 26.1521 0.41 sec

LSTM [23], [52], [53] 0.21 0.0704 74.82 16.8951 0.78 sec
TCN [14], [32] 0.60 0.1528 176.21 103.63 0.25 sec

and adapting to dynamic data patterns, LSTM addresses the
vanishing gradient problem and effectively captures temporal
dependencies of the main observables’ time series. TCN,
designed for sequence modeling, efficiently processes the WT
sequential data, focusing on capturing long-range dependen-
cies between estimated wind speed, pitch, and torque control
sequences. Although these architectures differ in handling
data characteristics, parameter connections, and computational
requirements, the hybrid approach leverages the strengths
of each model to enhance predictive accuracy for anomaly
detection across various conditions and operational modes.

The studied ANFIS-based, LSTM, and TCN architectures
demonstrate significantly reduced RMSE values for rotor
speed and electrical power prediction within the hybrid frame-
work, which integrates data-driven and physics-based infor-
mation. This signifies a substantial enhancement in the pro-
posed prediction strategy compared to the baseline approach.
However, it is worth mentioning that the LSTM outperforms
ANFIS and TCN in terms of accuracy despite a longer infer-
ence time. On the other hand, introducing genetic algorithms
(GA) to optimize FCM parameters significantly improves the
accuracy and sensitivity of the ANFIS-GP/SC model to the
stochasticity of wind speed while reducing execution time.
In the case of TCN, its performance excels when trained for
extended epochs, and it can rival the LSTM when the number
of epochs is increased to around 300. However, the number
of training epochs has been maintained at 100 for all models
to mitigate over-fitting risks and ensure a fair comparison.

The improved accuracy across all deep learning approaches
within the hybrid framework underscores the practicality and
versatility of the proposed method. Nevertheless, selecting
among these deep learning surrogate models should be in-
fluenced by the size of the training dataset and a trade-off
between the required inference time and prediction accuracy.
These findings highlight the superiority of the hybrid physics-
based modeling approach, which adeptly captures the intricate
dynamics of WT systems, resulting in more precise predictions
of rotor speed and power output compared to the baseline
black box model, with a substantial 67.97% reduction in
average RMSE.

The following subsection discusses the application of the
proposed hybrid model in the anomaly detection framework
for health monitoring purposes.

B. Anomaly detection performance

In this section, the healthy prediction of the ANFIS model is
fed into the weakly supervised health monitoring method for

 

 

Figure 9: Performance of the classifiers for the first type
data: the baseline approach with the BDT and the proposed
approach with the self-learned SVM.

two types of operating conditions. The first type represents the
healthy and faulty operation of the WT in partial and full-load
regions without considering the transition zone. The healthy
predicted data needs to be differentiated from all the single
anomalies or the combination of PMSG abnormalities with
either pitch failure or yaw misalignment. The confusion ma-
trices are shown in Fig.9, using the health codes, i.e., Healthy
Operation including the curtailment (HO), PMSG Abnormality
(PA), Pitch Failure (PF), and Yaw Misalignment (YM). These
indicate the best performance of the updated SVM created
by the proposed self-learning classification strategy, compared
with the conventional classification approach that suggests a
Binary Decision Tree (BDT) to classify anomalies without
considering the updated learning approach. Even though the
BDT presents rather satisfactory accuracy among all applied
classifiers (BDT and SVMs with different kernel functions
discussed in TableII), the results show employing the proposed
approach gives an updated SVM with Gaussian kernel function
that significantly improves anomaly detection performance.
The second type of data used for evaluating the proposed
algorithm includes WT operation in the transition zone, where
all the anomalies are likely to occur while the control system
performance degrades due to the frequent switching between
pitch and torque control mechanisms, supporting the FCR pro-
vision of the deloaded WT. The performance of the SVM with
the best kernel functions, including execution time, minimum
prediction speed, total misclassification cost, and minimum
accuracy, are presented in Table II. Moreover, the Receiver
Operating Characteristic (ROC) curves and the area under the
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Figure 10: Anomaly detection for the second type data: the
proposed approach with the self-learned SVM and optimized
parameters.

Figure 11: Anomaly detection for the first data type applying
the proposed approach.

ROC curve (AUC) for different searched kernel functions are
illustrated in Fig.10, indicating that the cubic kernel function
has the best performance. Applying the Bayesian Optimization
(BO) algorithm, with a wide range of searches between 0.001
and 1000 for kernel scale and box constraint, can improve the
search efficiency and increase the execution time, which may
be less practical from a computational point of view. Fig.11
demonstrates successful classifications and highlights incorrect
classifications within the scatter plot of the two-dimensional
updated feature space. This showcases the robust performance
of the proposed anomaly detection method, even when faced
with challenges such as sparsity and lack of linearity in the
data points.

The presence of successful classifications in the scatter plot
validates the effectiveness of the proposed approach in accu-
rately identifying healthy behaviors. The algorithm identifies
and correctly classifies instances that exhibit patterns and char-
acteristics indicative of normal behavior. This demonstrates
the ability of the method to capture and understand complex
relationships within the data despite the inherent challenges
posed by sparsity and nonlinearity.

Additionally, incorrect classifications in the scatter plot
highlight the method’s ability to detect anomalies that deviate
from the expected patterns. These incorrect classifications
represent instances where the algorithm identifies data points

as anomalous, even though they may appear similar to healthy
data points that represent normal degradations due to TI and
power curtailment. This demonstrates the algorithm’s sensitiv-
ity to subtle variations and its capability to identify anomalies
that might not be apparent through conventional methods. As

Table II: The SVM kernel tricks for the second type data

Kernel
function

Execution
time (sec)

Min prediction
speed (obs/sec)

Total cost of
misclassification

Minimum
accuracy

Linear 6.061 16000 542 65.2%
Gaussian 3.279 11000 501 67.8%
Quadratic 19.235 12000 396 74.6%

Cubic 29.96 12000 332 78.7%
Cubic-BO 33.86 12000 293 81.2%

the confusion matrix illustrates in Fig.10, a global optimization
result is achieved by involving the kernel tricks for the updated
SVM. The pitch failure detection shows outperformance, while
the yaw misalignment detection has the lowest accuracy. The
signal shapes of electrical power and rotational speed in yaw
misalignment, unlike the PMSG abnormality and the pitch
failure, do not deviate significantly. In the yaw misalignment
scenario, the anomaly appears in the form of degradation
and lower electrical power efficiency. Also, this kind of
abnormality may occur because of aerodynamic degradation
due to a high level of turbulence intensity or frequent tran-
sients from torque to pitch control action. Also, it can be
challenging for the algorithm to distinguish the curtailment and
the aerodynamic degradation from yaw misalignment in the
transition zone. Nevertheless, by comparing the results shown
in Fig.9 and 10, the proposed approach gives a better result
for both data types. Although the second dataset type appears
to be more challenging due to the inclusion of data from
the transition zone, the proposed self-learning classification
performance is still satisfactory compared to the baseline
approach applied to the first dataset type without considering
operations in the transition zone. This observation indicates
the overall improvement of the proposed anomaly detection
in the presence of different sparsity levels in the dataset and
different degradation scenarios.

C. Computational efficiency trade-offs

By decreasing the time length of the sliding window over the
observable signals and recording at a low sampling frequency,
the detailed transient behavior of the system can be captured
and predicted by the deep learning models and, therefore,
automatically translated into features for a more realistic
and improved classification. To comprehensively analyze the
temporal dynamics of the system’s behavior, it is essential
to employ multiple time windows spanning from seconds
to minutes. Shorter time windows prove more effective for
identifying rapid fluctuations or anomalies, such as those
associated with PMSG abnormalities or degradations due to
turbulent wind conditions, which can occur within a short
time frame. In contrast, longer time windows offer a broader
perspective, facilitating the detection of gradual performance
decline or persistent issues like pitch or control failures.
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Nevertheless, reducing the window’s duration comes with
a trade-off. It intensifies the computational workload and
may hinder the optimization process when searching for the
best SVM kernel hyperparameters. Thus, when applying the
proposed approach, it is crucial to carefully consider the choice
of the time window, taking into account the specific types of
anomalies and a trade-off between accuracy and computational
feasibility.

This study investigated various time lengths of sliding win-
dows for the proposed anomaly detection method, and the most
favorable results emerged within the 10-50-second window
size. The first data type exhibited the best performance with a
50-second time window. Remarkably, even when we reduced
the time window to just 10 seconds for the second data type,
we observed an improvement in classification performance.
Therefore, since the proposed approach compromises fast and
efficient computation, the ANFIS-FCM and SVM-Gaussian
kernel function with the lowest inference and execution time
can be considered an initial setting for real-time health moni-
toring approaches. On the other hand, the LSTM or TCN and
SVM-BO are better alternatives for a reasonably large window
of time, i.e., more than 100s. These setting options can provide
a fully automated fault correction algorithm with sufficient
time to decide different logic and arrangements depending on
various operational conditions, consequently leading to a more
dedicated health monitoring system.

D. Limitations and prospects

In future research, noteworthy challenges deserve closer
attention. One significant challenge is data availability and
quality for predicting healthy behavior, which needs a more
thorough examination. This includes finding solutions for deal-
ing with limited data, creating effective methods for marking
unusual events during the initial stages of model training,
and managing the computational demands of complex models,
especially when working with larger wind farms. Moreover,
the aging effects, another form of degradation, should be
considered in predicting healthy operation. This means the
hybrid model should be adjusted, knowing the aging factors,
or updated using the most recent datasets. Addressing these
challenges is fundamental for making progress in WT health
monitoring.

Additionally, applying the proposed methodology to dif-
ferent types of WTs and various environmental conditions
can benefit transfer learning techniques, allowing the model
to adapt to different situations. By understanding how to
transfer and adjust knowledge across different types of turbines
and environmental settings, it is possible to fully realize the
potential of the proposed approach and make it useful in a
broader range of real-world applications.

V. CONCLUSION

In conclusion, this study introduces a hybrid physics-based
deep learning modeling approach that advances the field of
WT health monitoring and anomaly detection, particularly
in the context of providing Frequency Containment Reserve
(FCR). The contributions of this study are three-fold: First,

a hybrid framework is presented that accurately predicts WT
health by capturing the intricate interplay between stochastic
wind speed fluctuations and complex correlations between
control sequences (pitch and generator torque) and system
responses. The proposed hybrid structure’s practicality in
predicting two main observables, i.e., WT electrical power
and rotational speed, shows improvements compared to the
baseline black box approach. This modeling approach en-
hances anomaly detection by effectively distinguishing normal
and abnormal states. Second, this research introduces a self-
learning approach with an iterative framework, demonstrating
notable improvements in classifier performance. For employ-
ing Support Vector Machines (SVM) classification, coherent
features are extracted from crucial observables in both time
and frequency domains, enhancing the accuracy of condition
indicators. Third, a comprehensive range of anomaly and
degradation scenarios are considered, including those resulting
from curtailment operations for FCR provision, blade pitch
control failures, yaw misalignment, and Permanent Magnet
Synchronous Generator (PMSG) abnormalities. The results
demonstrate that the proposed health monitoring approach has
improved performance and can detect anomalies that may be
falsely classified as healthy but still possess some level of
degradation due to turbulent intensities or deloading operations
for FCR provision.
This work generally contributes to advancing wind energy
system monitoring and predictive maintenance strategies by
comprehensively evaluating WT health and performance. It
considers intricate operational conditions and the interde-
pendencies among control sequences, enhancing the inter-
pretability of anomaly detection and management of wind
energy conversion systems. However, challenges such as data
constraints, labeling anomalies for initial training, and model
complexity that can be computationally intensive for larger
wind farms should be further investigated in future studies.
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