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Summary

Renewable energy sources, especially wind energy, are recognized as vital
components of the global energy transition. Wind energy conversion systems
can help to mitigate climate change. The remarkable clean and abundant na-
ture of wind energy presents substantial opportunities for electricity generation,
significantly reducing greenhouse gas emissions compared to fossil fuel-based
energy sources. However, the intermittent and variable characteristics inher-
ent in wind energy create substantial challenges to ensuring the reliable and
efficient operation of large-scale wind energy conversion systems. These chal-
lenges include integrating fluctuating wind resources into the grid, maintaining
grid stability, optimizing power generation, and effectively managing the com-
plex dynamics of wind turbines and wind farms.

To address these challenges and unlock the full potential of wind power,
there is a pressing need to develop advanced control strategies and monitoring
techniques to optimize the performance, reliability, and grid integration of wind
energy conversion systems. To do so, we focus on adaptive strategies that can
optimally operate wind energy conversion systems. We particularly use data-
driven approaches and known control and monitoring approaches to make the
adaptation and the corresponding optimizations. With this research, we hope to
provide tangible solutions to policymakers as well as the industry involved with
Belgian offshore wind, like wind turbine manufacturers and operators, as well
as wind farm owners and teams responsible for the maintenance and operation
of their wind parks. This research covers both wind farm and wind turbine
operations.

Wind energy conversion systems can provide ancillary services to maintain
the reliability of electricity systems. They are particularly well suited to provide
frequency containment reserve (FCR): they can act on that specific time scale to
help stabilize the grid. The optimization of wind power systems providing such
services requires innovative approaches that go beyond conventional control
and monitoring methods to address the unique characteristics and complexities
associated with wind energy and grid frequency. The research conducted in
this thesis explores and develops methodologies that leverage state-of-the-art
data-driven technologies such as machine learning, advanced data analytics,
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and predictive modeling. Using these techniques that possess the capability
to learn from data, novel control strategies, and monitoring techniques are de-
vised to enhance the adaptive performance of wind energy conversion systems
and, more specifically, optimize energy production and provide FCR. These
techniques are helpful in overcoming the inherent challenges posed by wind
variability, intermittency, and uncertainty.

The presented research encompasses three primary areas: wind farm super-
visory control, wind turbine local control, and wind turbine health monitoring.
Each area addresses specific challenges and contributes to the overall objec-
tive of improving the operation and performance of wind energy conversion
systems that deliver FCR.

Chapter 2 covers the wind farm supervisory control domain. A novel op-
eration strategy to optimize wind farms’ contribution to reserve and energy
markets is proposed. It also optimally allocates the decided Frequency Con-
tainment Reserve (FCR), the primary frequency control of ancillary services,
among wind turbines while effectively managing wake formation. The research
introduces a two-stage stochastic programming approach that considers pos-
sible scenarios to account for uncertainties associated with intermittent wind
speed, wind direction, grid frequency variability, and the complex aerodynam-
ics of wake formation. Additionally, a data-driven surrogate model of wake
formation is integrated using an adaptive network-based fuzzy inference sys-
tem (ANFIS) trained on the Gauss-Curl-Hybrid wake model. This integration
significantly reduces computational complexity and enables rapid estimation of
optimal wake control parameters, such as yaw angles and axial induction fac-
tors. The proposed algorithm’s effectiveness is evaluated through an existing
wind farm case study, showcasing its potential to improve overall wind farm
performance under various operational conditions. Notably, it demonstrates
the algorithm’s ability to enhance FCR provision and optimize wake control.

Building upon the insights gained from wind farm supervisory control, the
research shifts its focus to wind turbine local control, explicitly supporting the
activation of FCR at individual wind turbines based on predetermined optimal
setpoints established at the wind farm supervisory control level. The research
aims to extend and improve the existing understanding of wind turbine local
control systems to facilitate FCR activation. To achieve this, the research fo-
cuses on the development of advanced control algorithms that deal with various
limitations, such as wind turbine nonlinearities, stochasticity of wind speed,
and grid frequency. Employing computationally efficient algorithms ensures
that the wind turbines operate within specified setpoints, considering physi-
cal constraints and restrictions projected by Transmission System Operators
(TSO).

In this context, Chapter 3 proposes a neural network-based Model Predic-
tive Control (MPC) approach developed to support FCR provision in full load
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conditions, utilizing the advantages of a fast pitch control system. The research
utilizes a closed-loop Hammerstein structure to approximate the nonlinear be-
havior of wind turbines equipped with a Permanent Magnet Synchronous Gen-
erator (PMSG). The proposed MPC structure can accurately predict the tur-
bine’s aerodynamic behavior by combining multilayer perceptron neural net-
works that reflect the steady-state nonlinear part and linear AutoRegressive
with Exogenous input (ARX) model that estimates the linear dynamic part
of the system. It provides optimal control actions in response to grid fre-
quency variations. A comparison with baseline proportional-integral (PI) con-
trollers demonstrates the superior performance of the MPC approach in terms
of improved power reference tracking and reduced mechanical loads on tur-
bine blades and the tower. The MPC system ensures a fast and stable response
to grid frequency variations while optimizing pitch and torque cooperation for
maximum power generation and grid stability.

Continuing the local control level investigation, Chapter 4 introduces an
adaptive operational strategy for providing FCR in both full and partial-load
operating regions. This strategy employs a generator torque control system in-
stead of a blade pitch control system to enable the wind turbine to provide FCR
in the suboptimal region of maximum power point tracking mode for the en-
tire operation without imposing aggressive structural loads on the pitch control
mechanism. This operational strategy also considers the unpredictable behav-
ior of grid frequency and wind speed. The research contributes an adaptive
reserve margin estimation method based on short-term grid frequency predic-
tions, which dynamically adjusts control setpoints in a supplementary FCR
control loop, enhancing stability and reliability. Additionally, gain scheduled
fuzzy-PI control is integrated to improve FCR provision in turbulent wind con-
ditions. This chapter demonstrates stable control performance in all operating
regions and reserve modes, ensuring reliable operation and power regulation
even in the presence of turbulent wind speeds without causing excessive struc-
tural loads on blade roots and tower fore-aft bending moments.

To address the challenge of wind turbine health monitoring, Chapter 5
presents a novel physics-informed deep learning framework. This frame-
work accurately approximates the time-varying correlation between wind
turbine control sequences and system response, enabling precise detection
of anomalies and degradations in wind turbine operation. Notably, the
research considers the curtailment mode, where wind turbines operate at
reduced capacity. The framework utilizes a hybrid structure and support
vector machine for classification in both the time and frequency domains,
accounting for uncertainties such as wind stochasticity and power curve
variations. An iterative learning framework enables dynamic updating of the
classifier, enhancing its ability to learn from new anomalies during active
operations. The chapter’s significance lies in its potential to improve the
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accuracy and efficiency of wind turbine health monitoring, leading to more
efficient assessments of turbine conditions and reduced downtime.

In conclusion, this thesis presents a comprehensive approach to optimiz-
ing the operation of wind power systems by addressing key challenges in wind
farm supervisory control, wind turbine local control, and wind turbine health
monitoring, considering maximizing energy production and delivering FCR.
The research contributes novel strategies and techniques to enhance the perfor-
mance, reliability, and grid integration of wind power systems. By optimizing
FCR provision, controlling wake formation, improving control strategies, and
enhancing health monitoring techniques, this research paves the way for a more
sustainable and resilient future powered by wind energy. The outcomes of this
research are crucial for the efficient and reliable integration of wind power into
the global energy landscape, promoting sustainability and reducing greenhouse
gas emissions.
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Samenvatting

Hernieuwbare energiebronnen, vooral windenergie, worden erkend als essen-
tiële onderdelen van de wereldwijde energietransitie. Windenergiesystemen
kunnen helpen om klimaatverandering tegen te gaan. De opmerkelijk schone en
overvloedige aard van windenergie biedt aanzienlijke kansen voor elektriciteit-
sopwekking, waarbij de uitstoot van broeikasgassen aanzienlijk wordt vermin-
derd in vergelijking met op fossiele brandstoffen gebaseerde energiebronnen.
De echter, de wisselende en variabele kenmerken die inherent zijn aan winden-
ergie, creëren aanzienlijke uitdagingen om de betrouwbare en efficiënte werk-
ing van grootschalige windenergie-conversiesystemen te waarborgen. Deze
uitdagingen omvatten het integreren van fluctuerende windbronnen in het elek-
triciteitsnet, het handhaven van de netstabiliteit, het optimaliseren van de en-
ergieopwekking en het effectief beheren van de complexe dynamiek van wind-
turbines en windparken.

Om deze uitdagingen aan te pakken en het volledige potentieel van
windenergie te ontsluiten, is er een dringende behoefte aan de ontwikke-
ling van geavanceerde controlestrategieën en bewakingstechnieken om
de prestaties, betrouwbaarheid en integratie in het elektriciteitsnet van
windenergie-conversiesystemen te optimaliseren. Om dit te doen, richten
we ons op adaptieve strategieën die windenergie-conversiesystemen opti-
maal kunnen laten werken. We maken met name gebruik van op gegevens
gebaseerde benaderingen en bekende besturings- en bewakingsbenaderingen
om de aanpassing en de bijbehorende optimalisaties uit te voeren. We hopen
met dit onderzoek concrete oplossingen te bieden aan beleidsmakers, evenals
aan de industrie die betrokken is bij Belgische offshore wind, zoals fabrikanten
en exploitanten van windturbines, evenals windmolenparkbeheerders en
teams die verantwoordelijk zijn voor het onderhoud en de werking van hun
windparken. Dit onderzoek omvat zowel de werking van windmolenparken
als individuele windturbines.

windenergie-conversiesystemen kunnen ondersteunende diensten bieden
om de betrouwbaarheid van elektriciteitssystemen te handhaven. Naast en-
ergieproductie kunnen ze ondersteunende diensten leveren. Ze zijn bijzonder
geschikt om primaire frequentieregeling (FCR) te bieden: ze kunnen op die



i
i

i
i

i
i

i
i

x Samenvatting

specifieke tijdschaal acteren om het net te stabiliseren. De optimalisatie van
windenergiesystemen die dergelijke diensten leveren, vereist innovatieve
benaderingen die verder gaan dan conventionele besturings- en bewak-
ingsmethoden om de unieke kenmerken en complexiteiten van windenergie
en netfrequentie aan te pakken. Het onderzoek dat in deze thesis wordt
uitgevoerd, verkent en ontwikkelt methodologieën die gebruikmaken van
state-of-the-art op data gebaseerde technologieën zoals machine learning,
geavanceerde gegevensanalyse en voorspellende modellering. Met behulp
van deze technieken, die de mogelijkheid hebben om te leren van gegevens,
worden nieuwe besturingsstrategieën en bewakingstechnieken bedacht om de
adaptieve prestaties van windenergie-conversiesystemen en, meer specifiek,
de optimalisatie van energieproductie en het bieden van FCR te verbeteren.
Deze technieken zijn nuttig om de inherente uitdagingen van windvariatie,
intermittentie en onzekerheid te overwinnen.

Het gepresenteerde onderzoek omvat drie primaire gebieden: supervis-
erende regeling van windmolenparken, lokale regeling van windturbines en
monitoring van de gezondheid van windturbines. Elk gebied adresseert speci-
fieke uitdagingen en draagt bij aan het algehele doel van het verbeteren van de
werking en prestaties van windenergie-conversiesystemen die FCR leveren.

Hoofdstuk 2 behandelt het domein van de superviserende regeling van
windmolenparken. Een nieuwe operationele strategie wordt voorgesteld
om de bijdrage van windmolenparken aan reserve- en energiemarkten te
optimaliseren. Het verdeelt ook de besloten Frequency Containment Re-
serve (FCR), de primaire frequentiebesturing van ondersteunende diensten,
optimaal onder windturbines, terwijl het de vorming van de wake effectief
beheert. Het onderzoek introduceert een tweestaps stochastische program-
meringsbenadering die mogelijke scenario’s overweegt om rekening te
houden met onzekerheden die gepaard gaan met wisselende windsnelheid,
windrichting, variabiliteit van de netfrequentie en de complexe aerody-
namica van wakevorming. Bovendien wordt een op gegevens gebaseerd
surrogaatmodel van wakevorming geïntegreerd met behulp van een adaptief
op netwerk gebaseerd fuzzy-inferentiesysteem (ANFIS) dat is getraind op
het Gauss-Curl-Hybrid wake-model. Deze integratie vermindert aanzienlijk
de rekencomplexiteit en maakt snelle schatting van optimale wakebestur-
ingsparameters mogelijk, zoals kruihoeken en axiale inductiefactoren. De
effectiviteit van het voorgestelde algoritme wordt geëvalueerd aan de hand
van een bestaande casestudy van een windmolenpark, waarbij het potentieel
wordt gedemonstreerd om de algehele prestaties van het windmolenpark te
verbeteren onder verschillende operationele omstandigheden. Met name toont
het de mogelijkheid van het algoritme om FCR-voorziening te verbeteren en
wakebesturing te optimaliseren aan.

Op basis van de inzichten uit de superviserende regeling van windmolen-
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parken, verschuift het onderzoek de focus naar de lokale regeling van windtur-
bines, waarbij expliciet ondersteuning wordt geboden voor de activering van
FCR bij individuele windturbines op basis van vooraf bepaalde optimale set-
points die zijn vastgesteld op het niveau

van de superviserende regeling van het windmolenpark. Het onderzoek
heeft tot doel het bestaande begrip van lokale regelingssystemen van wind-
turbines uit te breiden en te verbeteren om FCR-activering te vergemakkeli-
jken. Om dit te bereiken, richt het onderzoek zich op de ontwikkeling van gea-
vanceerde regelalgoritmen die omgaan met verschillende beperkingen, zoals
de niet-lineariteiten van windturbines, de stochasticiteit van windsnelheid en
de netfrequentie. Het gebruik van rekenkundig efficiënte algoritmen zorgt er-
voor dat de windturbines binnen gespecificeerde setpoints werken, rekening
houdend met fysieke beperkingen en beperkingen die zijn geprojecteerd door
de transmissienetbeheerders (TSO).

In dit verband stelt hoofdstuk 3 een op kunstmatige neurale netwerken
gebaseerdeModel Predictive Control (MPC) benadering voor die is ontwikkeld
om FCR te ondersteunen voor windsnelheden boven de nominale waarbij
gebruik wordt gemaakt van de voordelen van een snel pitch-regelsysteem. Het
onderzoek gebruikt een gesloten Hammerstein-structuur om het niet-lineaire
gedrag van windturbines met een Permanent Magnet Synchronous Generator
(PMSG) bij benadering vast te leggen. De voorgestelde MPC-structuur kan
het aerodynamische gedrag van de turbine nauwkeurig voorspellen door
multilayer perceptron neurale netwerken te combineren die het stationaire
niet-lineaire deel weerspiegelen en een lineair AutoRegressive with Exogenous
input (ARX) model dat het lineaire dynamische deel van het systeem schat.
Het biedt optimale regelacties als reactie op variaties in de netfrequentie.
Een vergelijking met basale proportioneel-integrale (PI) regelaars toont de
superieure prestaties van de MPC-benadering aan in termen van verbeterde
vermogensreferentie-tracking en verminderde mechanische belastingen op
de turbinebladen en de toren. Het MPC-systeem zorgt voor een snelle en
stabiele respons op variaties in de netfrequentie en optimaliseert krui- en
koppelregeling voor maximale energieopwekking en netstabiliteit.

Verdergaand met het onderzoek op het niveau van lokale regeling, in-
troduceert hoofdstuk 4 een adaptieve operationele strategie voor het leveren
van FCR in zowel volledige als gedeeltelijke belastingsregio’s. Deze strategie
maakt gebruik van een regelsysteem voor generator-koppel in plaats van een
pitch-regelsysteem om de windturbine in staat te stellen FCR te leveren in
het suboptimale gebied van de modus voor het volgen van het maximale
vermogenspunt gedurende de hele werking, zonder agressieve structurele
belastingen op het pitch-regelmechanisme op te leggen. Deze operationele
strategie houdt ook rekening met het onvoorspelbare gedrag van de netfrequen-
tie en de windsnelheid. Het onderzoek draagt bij aan een adaptieve schatting
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van de reserve-marge op basis van korte-termijn voorspellingen van de
netfrequentie, die de controle setpoints dynamisch aanpast in een aanvullende
FCR-regelkring, wat de stabiliteit en betrouwbaarheid verbetert. Bovendien
wordt gain scheduled fuzzy-PI-regeling geïntegreerd om FCR-levering te
verbeteren in turbulente windomstandigheden. Dit hoofdstuk toont stabiele
controleprestaties in alle werkingsgebieden, wat zorgt voor betrouwbare
werking en vermogensregeling, zelfs in aanwezigheid van turbulente wind-
snelheden zonder overmatige structurele belastingen op de wortels van de
bladen en buigmomenten van de toren.

Om de uitdaging van het monitoren van de gezondheid van windturbines
aan te pakken, presenteert hoofdstuk 5 een nieuwe fysica-geïnformeerde deep
learning methode. Deze methode benadert nauwkeurig de tijdvariërende corre-
latie tussen de regeling van windturbines en de systeemrespons, wat zorgt voor
een precieze detectie van afwijkingen en degradaties in de werking van wind-
turbines. Met name houdt het onderzoek rekening met ’curtailment’, waarbij
windturbines op verminderde capaciteit werken. Het systeem maakt gebruik
van een hybride structuur en een ’support vector machine’ voor classificatie
in zowel de tijd- als frequentiedomeinen, rekening houdend met onzekerheden
zoals de stochastiek van de wind en variaties in de vermogenscurve. Een iter-
atief leerframework maakt dynamische bijwerking van de classifier mogelijk,
wat de mogelijkheid verbetert om te leren van nieuwe afwijkingen tijdens ac-
tieve operaties. De meerwaarde van dit hoofdstuk ligt in het potentieel om de
nauwkeurigheid en efficiëntie van de gezondheidsmonitoring van windturbines
te verbeteren, wat leidt tot efficiëntere beoordelingen van de toestand van de
turbine en verminderde stilstand.

Tot slot presenteert deze scriptie een allesomvattende benadering om
de werking van windenergiesystemen te optimaliseren door de belangrijkste
uitdagingen aan te pakken in de superviserende regeling van windmolenparken,
de lokale regeling van windturbines en de monitoring van de gezondheid
van windturbines, met als doel de energieproductie te maximaliseren en
FCR te leveren. Het onderzoek draagt nieuwe strategieën en technieken
bij om de prestaties, betrouwbaarheid en integratie in het elektriciteitsnet
van windenergie-conversiesystemen te verbeteren. Door FCR-levering te
optimaliseren, wakevorming te regelen, regelstrategieën te verbeteren en
monitoringsmethoden te verbeteren, legt dit onderzoek de weg vrij voor een
meer duurzame en veerkrachtige toekomst aangedreven door windenergie. De
resultaten van dit onderzoek zijn cruciaal voor de efficiënte en betrouwbare in-
tegratie van windenergie in het wereldwijde energielandschap, ter bevordering
van duurzaamheid en vermindering van de uitstoot van broeikasgassen.
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Chapter 1

Introduction

1.1 Introduction to offshore wind farms
1.1.1 Wind Energy: potential and impact
The global transition to renewable energy is a fundamental power generation
and consumption shift. It is driven by the urgent need to address climate change
and environmental degradation. By reducing our dependence on fossil fuels, re-
newable energy provides a cleaner, greener, and more sustainable pathway [1].
This transition restrains greenhouse gas emissions, stabilizes global tempera-
tures, and fosters environmental preservation. This green transition further-
more helps to foster economic growth, improve public health, enhance energy
security, and promote sustainable development [2].

In recent years, wind energy has experienced a remarkable surge in popular-
ity as a clean and renewable alternative to traditional fossil fuel sources. Unlike
fossil fuels, which are finite resources, wind power relies on an abundant and
virtually limitless wind source. Wind energy is a sustainable and long-term so-
lution that can help, together with other power generation solutions, to address
our energy needs. Recent studies have highlighted its advantages, showcasing
its potential as a sustainable energy solution [3, 4].

One of the key advantages of wind energy is its cost-effectiveness. With
its relatively low operating expenditures (OPEX), it is an economically viable
power generation solution [5]. This cost-effectiveness contributes to the overall
competitiveness of wind energy in the market. Actually, after a reasonable
investment payback period, the revenues exceed the costs associated with the
designing (with Capital Expenditures, CAPEX) and operating (OPEX) them
[6,7].

Wind energy also offers the advantage of prompt market entry. Wind farms
can be deployed relatively fast compared to large-scale traditional power plants.
This allows for a rapid expansion of renewable energy capacity and a faster tran-
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2 Introduction

sition away from fossil fuels. Regarding environmental impact, wind energy is
highly regarded for its friendliness to the ecosystem [8]. Additionally, wind
turbines are known for their relatively smaller physical footprint compared to
many conventional power plants, which can contribute to mitigating habitat dis-
ruption and reducing potential land use conflicts [9]. Wind energy is a suitable
complementary solution to solar energy that relies on sunlight, and hydroelec-
tric power plants rely on available water sources [10].

Wind farms enable the efficient use of wind resources, optimizing land/sea
use and generating electricity at a larger scale. They facilitate supporting in-
frastructure development, streamline operations and maintenance, and enhance
grid integration. They furthermore contribute to job creation, local investment,
and reliable electricity supply [11].

The growth of wind energy has been remarkable in recent years. 2022
marked the third most successful year in new capacity, as the global addi-
tion reached 78 GW [12]. The overall installed capacity worldwide reached
906 GW, showing a Year-on-Year expansion of 9%. Anticipated for 2023 is a
significant milestone: the first instance of global new capacity exceeding 100
GW [12]. GlobalWind Energy Council (GWEC)Market Intelligence predicts a
15% year-on-year growth [12]. Looking ahead to the five years of 2023-2027,
GWEC Market Intelligence forecasts a cumulative new capacity of 680 GW,
averaging 136 GW annually. This positive trajectory extends to 2030 with an
additional 143 GW [12]. The earlier forecast of 1078 GW between 2022 and
2030 has been revised to 1221 GW, representing the new capacity extention to
be added to Horizon 2030 [12].

There is a consistent trend towards higher-rated power capacities in wind
turbine designs. This pursuit reduces the levelized energy cost (LCOE) and
enhances the annual energy yield (AEY). A significant trend in wind energy
conversion systems is the development of offshore wind turbines in sea areas.
Figure 1.1 illustrates the Compound Annual Growth Rate (CAGR) of offshore
wind installations, with Europe (green) being a key player until 2030. Offshore
renewable energy sources have become economicallymature, andmany regions
have achieved cost competitiveness compared to fossil fuels. The levelized cost
of electricity (LCOE) - the rate of the total energy output of wind turbines to
build and operate it over its lifetime to the average total cost of the wind turbines
over that lifetime [13] - and enhancing Annual Energy Production (AEP) [14,
15]. The development and maintenance of offshore wind is currently one of
the most important parts of the Blue Economy. The objectives outlined in the
Paris Agreement, which aim to limit global temperature rise to below 1.5 °C,
are driving efforts to surpass 380 GW of cumulative installed offshore wind
capacity worldwide by 2030, with a projected capacity of over 2,000 GW by
2050 [15].

Offshore wind farms provide distinct advantages compared to onshore wind



i
i

i
i

i
i

i
i

1.1 Introduction to offshore wind farms 3

Figure 1.1: Evolution of offshore wind installations on different
continents from 2020 until 2030. Numbers show the total amount
of projected GW installations together with the Compound An-
nual Growth Rate (CAGR) [12].

farms. They benefit from more robust and consistent winds, resulting in higher
AEP and reliability. Offshore placement reduces visual and noise impact on
coastal communities and conserves valuable land resources [16]. Europe’s in-
vestment in offshore wind has been substantial, with countries like Belgium
capitalizing on their significant offshore wind potential. Belgium, situated in
the North Sea with favorable wind conditions, is actively using this valuable re-
newable resource [17]. The country has emerged as a leader in offshore energy
installations, demonstrating a solid commitment to renewable energy. In 2020
alone, Belgium added 0.7 GW of new offshore wind capacity, further solidify-
ing its position in renewable energy endeavors. Currently, Norther is the largest
offshore wind farm in Belgium and has a capacity of 370 MW. The Thornton-
bank wind farm, with C-Power operating the wind farm, is the second largest
offshore wind farm in Belgium having a total capacity of 325 MW, equal to the
annual average electricity consumption of 300k families. Figure 1.2 shows the
Belgian offshore wind farms with e.g. the Norther and C-Power. With a clear
vision for expansion, the federal government of Belgium decided in 2021 to
further amplify offshore wind energy capacity. The objective is to achieve an
additional production capacity ranging from a minimum of 3.15 GW to a max-
imum of 3.5 GW in the Princess Elisabeth Zone (PEZ) that is indicated in Fig.
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Figure 1.2: Belgian offshore wind farms. The blue areas inside
the dashed area represent the Princess Elisabeth zone [20].

1.2 The Belgian government has set targets to increase offshore wind capacity,
aiming to reach 4 GW installed capacity by 2026. Moreover, future expansion
plans envision a remarkable 6.75 GW by 2030 [17]. These targets underscore
Belgium’s steadfast dedication to renewable energy and position the country as
a significant player in the offshore wind sector.

The offshore wind energy development in Belgium contributes to reduc-
ing carbon emissions; e.g., the Thornton Bank wind reduces CO2 emissions
equivalent to 415 kilotonnes per year compared to a gas-fired power plant. It
furthermore aligns with the blue economy’s principles. Offshore wind projects
in Belgium create employment opportunities and stimulate the growth of the
renewable energy industry, driving the transition towards a more sustainable
and resilient blue economy [18,19]. Belgium’s substantial progress in offshore
wind installations, ambitious expansion plans, and favorable wind conditions
highlight the country’s potential for further growth in the offshore wind sector.

1.1.2 Key components and infrastructure requirements
Offshore wind farms require various key components and a vast infrastructure
to convert wind energy to electrical power and transmit it to the electrical grid.
Fig. 1.3 illustrates these key components. Offshore wind turbines are specif-
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Figure 1.3: The main structure of a wind turbine with its main
components [21].

ically designed to withstand the harsh marine environment and operate effi-
ciently in varying wind conditions. In the text below, we provide details on the
tower, nacelle, rotor, pitch control system, yaw control system, generator, and
the foundations of wind turbines [21].

The tower provides structural support for the turbine and is typically made
of steel or concrete. The higher the tower above sea level, the higher, on aver-
age, the wind speeds and, hence, the ability to capture higher wind energy. The
tower ranges in height depending on the specific offshore site’s water depth and
wind conditions. Advanced tower designs, such as multi-section or hybrid tow-
ers, are being developed to support more giant turbines and enable installation
in deeper waters [22].

The nacelle houses the critical components of the turbine, including the
generator, gearbox, and control systems. It is mounted on top of the tower and
is responsible for converting the mechanical energy from the rotor into electri-
cal energy. Traditionally, wind turbines have utilized geared drive-trains, where
the rotor speed is increased through a gearbox before being transferred to the
generator. Direct-drive wind turbines consist of a generator, particularly Per-
manent Magnet Synchronous Generators (PMSG), that is directly connected to
the rotor. They have gainedmore popularity over the past years, and their design
offers several advantages that can be attributed to the fact that the drive-train
is not geared with higher efficiency, reduced maintenance requirements, and
improved reliability [23]. A contemporary trend in large turbines has emerged,
exemplified by models like the Vestas V164. In these instances, a PMSG is
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integrated yet paired with a gearbox. This strategic choice arises due to the
monumental scale of these turbines, where the nominal rotor speed becomes
excessively low for economically viable direct drive implementation [24].

The rotor is the part of the turbine that captures the wind’s kinetic energy.
It consists of multiple blades, usually lightweight and durable materials such
as fiberglass or carbon fiber-reinforced composites. The number of blades can
vary, with three being the most common configuration. The length and shape
of the blades are carefully designed to maximize energy capture by utilizing
aerodynamic principles. Most recent turbine designs incorporate variable pitch
blades that can adjust their angle to optimize performance in different wind
conditions [25].

As mentioned, wind turbines are also equipped with pitch, yaw, and gen-
erator torque control systems. As readily mentioned, the pitch control system
is responsible for adjusting the pitch angle of the rotor blades [26]. The pitch
angle refers to the angle of the blades with respect to the incoming wind. Pitch
control primarily aims to regulate the aerodynamic forces acting on the blades.
By adjusting the pitch angle, the pitch control system can control the rotational
speed of the rotor and manage the turbine’s power output. During high wind
speeds, the pitch control system can feather or change the pitch angle of the
blades to reduce their angle of attack, thus limiting the amount of power gen-
erated and protecting the turbine from potential damage. Conversely, the pitch
angle can be adjusted during low wind speeds to maximize power production.
The pitch control system comprises blade pitch actuators, sensors, and a con-
troller. The sensors measure parameters such as wind speed, rotor speed, and
power output, while the controller adjusts the pitch angle based on the desired
performance and operational conditions [26, 27].

The yaw control system is responsible for adjusting the orientation or yaw
angle of the wind turbine rotor with respect to the wind direction. The primary
purpose of yaw control is to ensure that the rotor blades face directly into the
incoming wind, maximizing wind energy capture. It involves the rotation of
the entire nacelle and rotor assembly to align with the wind direction. The yaw
control system typically consists of sensors, a yaw drive mechanism, and a con-
troller. Sensors measure the wind direction, and the controller sends signals to
the yaw drive mechanism to adjust the yaw angle accordingly. By maintaining
proper alignment with the wind, the yaw control system helps to optimize the
turbine’s performance and energy production [28].

The generator converts the rotational mechanical power from the drive train
into electrical power. To do so, a generator torque control system is needed.
In a PMSG, the generator type we consider throughout this dissertation, Di-
rect Torque Control (DTC), is a control system that continuously fine-tunes the
torque output of the PMSG to match the instantaneous wind conditions. It en-
sures the generator operates within its maximum power capture range with the
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Figure 1.4: Types of offshore wind turbine foundations [30].

highest conversion efficiency. Through the intricate interplay of torque com-
mands, stator voltage, and flux adjustments, the control system maximizes the
conversion of kinetic wind energy into electrical power, enhancing energy pro-
duction while maintaining stability and reliability [29].

In addition to the turbines, various types of foundations are employed in
offshore wind farms, depending on the water depth and seabed conditions and
the height or rated power of the wind turbines. Figure 1.4 shows different types
of wind turbine foundations. Monopile foundations are the most common and
cost-effective solution for shallow waters with a firm seabed [30]. These cylin-
drical steel structures are driven into the seabed using specialized installation
equipment. Jacket structures, consisting of lattice-like steel frames, are used in
deeper waters and more challenging soil conditions. They provide increased
load-bearing capacity and stability. Floating platforms, such as floating wind
turbines or tension leg platforms, are utilized in even deeper waters where fixed
foundations are not feasible. These platforms are tethered to the seabed and use
mooring systems to maintain stability [31].

The subsea cables in offshore wind farms are essential in transmitting the
generated electricity to the onshore grid. Export cables transmit the power
from the wind farm to the onshore substation, which is connected to the main
electrical grid. Inter-array cables connect individual turbines within the wind
farm, forming a network for power collection and distribution. Both cables
are specially designed to withstand the marine environment, with appropriate
insulation and protection against mechanical stress and corrosion. Advanced
cable technologies, such as dynamic cables, are being developed to address
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challenges associated with floating wind farms and increased power transmis-
sion capacity. These cutting-edge cables exhibit a remarkable capability to
accommodate the dynamic movements intrinsic to floating installations, so-
lidifying their role as a linchpin in ensuring reliable, adaptable, and efficient
energy transmission [32, 33].

Offshore platforms serve as hubs for the wind farm, providing the neces-
sary infrastructure for operation and maintenance activities. They are typically
equipped with control rooms, accommodation facilities, spare parts, and equip-
ment storage areas. These platforms also house systems for monitoring and
controlling the wind turbines remotely, allowing for efficient operation and
maintenance activities. In some cases, offshore wind farms may require the
use of High-Voltage Alternating Current (HVAC) or High-Voltage Direct Cur-
rent (HVDC) platforms [34]. HVAC platforms are typically used for shorter-
distance transmission, while HVDC platforms are employed for offshore wind
farms due to their superior efficiency over long distances, reduced cable costs,
improved voltage control, and the ability to interconnect remote sites. They
enhance grid integration, especially for deep-sea installations, provide stable
power transmission, and offer environmental benefits through fewer cables.
HVDC systems also facilitate energy trading between countries and can ac-
commodate future wind farm expansion. These platforms play an important
role in efficiently transmitting renewable energy from offshore wind farms to
onshore grids, supporting the growth of sustainable energy sources [35].

1.1.3 Wind turbine aerodynamics

Wind turbine aerodynamics is a complex field of study due to the intricate flow
phenomena and the aerodynamic forces’ nonlinear behavior. This involves
complex flow interactions between the rotating blades and the incoming wind.
As the wind encounters the rotating blades, it creates unsteady and turbulent
flows characterized by vortices, wake interactions, and flow separation. Study-
ing these complex flow patterns helps to understand their effect on wind turbine
and wind farm performance [36].

Wind turbine nonlinearity

Wind turbines exhibit nonlinear behavior regarding the relationship between
their inputs, i.e., wind conditions, control parameters; and outputs such as
power production and structural loads. The relationship between wind speed
and power output is nonlinear. The power output is minimal at low wind speeds
as the turbine requires a certain threshold wind speed, called the cut-in speed,
to start producing power. As the wind speed increases, power production grows
rapidly until it reaches its rated power output. Beyond the rated wind speed, the
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power curve saturates, and the increase in power becomes less steep [37].
Another nonlinear behavior is the relationship between blade pitch angle

and power output is nonlinear. Adjusting the blade pitch alters the angle of
attack and, hence, the aerodynamic forces acting on the blades, affecting power
production. Furthermore, wind turbines need to face the incoming wind for
optimal power production. If the turbine experiences yaw misalignment, the
power output decreases nonlinearly due to increased aerodynamic losses and
changes in wind loading on the blades [37].

One of the nonlinear characteristics is dynamic stall. Dynamic stall occurs
when the blade’s angle of attack changes rapidly due to its rotation, leading
to unsteady flow separation. This phenomenon significantly influences the lift
and drag forces on the blades and can lead to fluctuations in power production
and increased structural loads. Another element of the system’s complexities is
varying wind conditions and the cyclic loading that wind turbine blades expe-
rience due to the periodic changes in wind speed and direction. These dynamic
effects introduce nonlinearities in the system’s response, affecting fatigue life
and structural integrity [38].

Modern wind turbine blades are also quite flexible, which introduces addi-
tional nonlinear behavior. The blade’s elastic deformation can affect the aero-
dynamic performance and alter the blade’s shape during operation, further com-
plicating the aerodynamics [39].

Researchers and engineers use computational fluid dynamics (CFD) sim-
ulations and experimental testing to model wind turbine aerodynamics accu-
rately. CFD simulations allow the capture of the complexities of the flow and
provide valuable insights into the nonlinear aerodynamic behavior. However,
these simulations require sophisticated turbulence models and high compu-
tational resources to represent wind turbine aerodynamics’ turbulent and un-
steady nature adequately. Experimental testing in wind tunnels and on oper-
ational wind turbines also plays a vital role in validating and refining these
models, ensuring a better understanding of the aerodynamic behavior of wind
turbines [40, 41].

The Fatigue, Aerodynamics, Structures, and Turbulence (FAST) simulator,
developed by the National Renewable Energy Laboratory (NREL), is widely
recognized as a reliable and accurate simulation tool for wind turbine systems.
NREL has made significant efforts in developing and refining FAST over the
years, making it a widely used software in the wind energy industry and re-
search community [42].

FAST is specifically designed to simulate the dynamic behavior of wind tur-
bines, including the interactions between aerodynamics, structures, controls,
and environmental conditions. It enables researchers and engineers to ana-
lyze various aspects of wind turbine performance, such as structural integrity,
fatigue life, and power production. It can also be used for design optimiza-
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tion, control and monitoring developments, and wind turbine certification pur-
poses [42].

NREL has extensively validated FAST by comparing its results with ex-
perimental data, field measurements, and other simulation tools. Although no
simulation tool is entirely exempt from uncertainties and limitations, FAST
has consistently demonstrated its ability to provide reliable and accurate re-
sults when used appropriately, considering the necessary inputs and assump-
tions [42–44].

Wake interactions in wind farms

The arrangement of wind turbines in offshore farms is carefully designed to
extract the maximum amount of wind energy available at the site. However,
multiple turbines at close distances create complex aerodynamic interactions
that can significantly affect the wind farm’s overall performance and power
output, i.e., LCOE andAEP. One of the challenges in offshore wind farm design
is managing the wakes generated by upstream turbines. When a wind turbine
extracts energy from the wind, it creates a wake of slower-moving air behind
it. When downstream turbines are exposed to these wakes, their performance
is adversely affected. This phenomenon is known as wake interference or wake
effects [45, 46].

Wake redirection control is a method used to mitigate the adverse effects
of wakes on downstream turbines. It involves adjusting the yaw angles of the
turbines to redirect the wakes away from downstream turbines. By changing
the yaw angles, the wake can be deflected and spread out, reducing its impact
on the performance of downstream turbines. This control strategy aims to op-
timize the power output and efficiency of the entire wind farm. On the other
hand, axial induction control involves adjusting the rotational speed of the tur-
bines to control the amount of energy extracted from the wind. By decreasing
the turbine’s rotational speed, the extraction of energy is reduced, leading to
a decrease in wake intensity. This approach helps to manage the wakes and
improve the overall performance of the wind farm [47–49].

Specialized tools and software can be employed to analyze and model the
complex wake interactions in offshore wind farms. One such tool is FLORIS
(FLOw Redirection and Induction in Steady State) [50, 51]. In addition to
FLORIS, several other wake modeling tools are available that help analyze and
predict the wake effects in offshore wind farms. Tools like WindPRO, Open-
FAST, and Fuga offer a range of wakemodeling capabilities, including different
wake models, CFD techniques, and optimization features. These tools provide
valuable insights into wake behavior, allowing for better wind farm design, lay-
out optimization, and supporting turbine placement decisions [52–54].

Nevertheless, FLORIS offers a simplified yet practical modeling approach.
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It utilizes simplified mathematical models and algorithms to simulate the flow
and wake behavior within wind farms. This simplicity allows for faster simu-
lations and efficient computations, making it suitable for large-scale wind farm
analysis. FLORIS also incorporates wake models that capture the essential
characteristics of wake effects, such as the spread and intensity of wakes. These
models consider parameters like turbine characteristics, wind direction, and at-
mospheric conditions to accurately predict wake behavior. By accurately mod-
eling the wake effects, FLORIS enables a better assessment of power losses and
performance impacts within the wind farm.

Moreover, FLORIS provides optimization features that allow users to ex-
plore different layout configurations, turbine positions, and control strategies
within the wind farm. This optimization capability helps to maximize the over-
all AEP and LCOE. Using FLORIS, designers and engineers can assess various
scenarios and find the most optimal wind farm configuration [50, 51].

1.1.4 Offshore wind energy and challenges of intermittency
Despite the vast potential of renewable energy sources, including offshore
wind, these sources face challenges related to intermittency, which refers to
the variability in their power output due to fluctuations in weather conditions.
This intermittency poses difficulties in maintaining a balanced and reliable
supply of electricity. The intermittent nature of renewable energy sources can
impact grid stability, as rapid changes in generation can create imbalances in
the grid, affecting voltage and frequency. Conversely, offshore wind can also
help to address challenges by providing grid balancing services [55].

To overcome the challenges of renewable energy intermittency, grid op-
erators and energy systems require effective grid balancing services. This in-
volves maintaining a stable and balanced electricity supply to meet the varying
demands of consumers. Offshore wind can contribute to these grid-balancing
services in several ways. Firstly, offshore wind generation tends to be more
predictable than onshore wind due to higher wind speeds and less turbulence
at sea. Advanced weather forecasting models enable better anticipation of off-
shore wind power output, allowing grid operators to plan and manage grid re-
sources more effectively [56].

Furthermore, offshore wind farms can be developed at larger scales than
onshore wind, offering higher capacity and more consistent power generation.
This scalability enhances the potential contribution of offshore wind to grid
balancing services. Moreover, offshore wind farms can be located across a
wide geographical area, tapping into different wind patterns and reducing the
likelihood of simultaneous low generation. This geographical diversity helps
to mitigate the impact of localized weather conditions on power generation, and
thus enhancing grid stability [56].
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1.2 Wind energy and the provision of ancillary services

1.2.1 Offshore wind farms providing ancillary services

Offshore wind farms have the potential to provide valuable grid balancing ser-
vices and, as such, support power systems. They can help to maintain grid
stability and balance the supply and demand of electricity [57]. One signif-
icant grid balancing service that offshore wind farms can offer is frequency
regulation. The grid’s frequency can deviate from its optimal level as the elec-
tricity demand fluctuates throughout the day. Offshore wind farms can actively
participate in frequency regulation by adjusting their power output in response
to changes in grid frequency, which should be maintained at 50 Hz with ±20
mHz allowed deviation [58].

Another grid balancing service that offshore wind farms can contribute to
is voltage control. Fluctuations in power generation can affect voltage levels in
the grid. Offshore wind farms equipped with modern control system designs
can actively manage their output to regulate voltage with a deviation allowance
of around ±5% from the nominal voltage, helping to maintain voltage stability
of the electrical grid within acceptable limits. This ensures that electrical ap-
pliances and equipment connected to the grid receive the appropriate voltage,
safeguarding their functionality and longevity [59].

Furthermore, offshore wind farms can play a role in providing reactive
power support. Reactive power is essential for maintaining voltage levels in
alternating current (AC) transmission systems. Offshore wind farms can sup-
ply or absorb reactive power as needed, helping to regulate voltage and enhance
the grid’s stability. For instance, an offshore wind farm with a total rated capac-
ity of 500 megawatts (MW) can supply or absorb reactive power in the range
of 50 to 200 megavolt-amperes (MVA). By providing reactive power support,
offshore wind farms assist in maintaining optimal operating conditions for the
entire electrical network [60].

Moreover, offshore wind farms can be integrated with energy storage sys-
tems, such as batteries or pumped hydro storage. Excess electricity generated
during periods of high wind can be stored in these systems for later use dur-
ing periods of low wind or increased demand. This integration enables off-
shore wind farms to act as a dispatchable energy source, providing power when
needed, thus enhancing grid flexibility and stability [61].

1.2.2 Ancillary services in Europe

Ancillary services provision in European power systems refers to the suite of
services that support the reliable and efficient operation of the electricity grid
beyond the energy supply [62]. In European power systems, several ancillary
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services are commonly provided. They are detailed here below, and their acti-
vation time, i.e., in what time frame are they active, is shown in Fig. 1.5:

Inertial Response (IR) with wind turbines: Traditional synchronous gener-
ators, like those in thermal power plants, have rotating masses that inherently
provide inertia to the system, and their power reacts to the derivative of the grid
frequency. In the context of wind turbines, a similar inertial response can be re-
alized through synthetic or virtual inertia. Wind turbines, being asynchronous
generators, lack this rotating mass and, therefore, do not have the same natural
inertial response. Modern wind turbines are required to emulate or mimic the
inertial response of traditional generators. These turbines need to respond to
frequency deviations by temporarily reducing or increasing their power output.
The timescale of this response depends on the control strategies and the tech-
nology used. Generally, the inertial response can range from seconds to tens
of seconds for wind turbines with synthetic inertia capabilities. This is faster
than the natural inertial response of traditional generators but slower than the
fast frequency response provided by batteries and other resources.

Fast Frequency Response (FFR): This frequency service refers to the ability
of power system resources to rapidly respond to changes in system frequency
to maintain grid stability. Unlike inertial response, FFR involves non-rotating
resources like battery energy storage systems (BESS), demand response, and
other flexible resources that can rapidly adjust their power output or consump-
tion to help stabilize the system frequency. FFR operates on a much faster
timescale, often in fractions of a few seconds [62].

Frequency Containment Reserve (FCR): This ancillary service refers to the
reserve capacity that power system operators maintain to respond quickly to
changes in frequency and maintain grid stability. FCR is an essential ancillary
service in wind energy integration that facilitates frequency regulation to help
support the grid’s frequency within an acceptable range. Grid frequency is a
critical parameter that must be kept stable at a specific level, i.e., 50 Hz is the
most common frequency utilized in most electrical grid systems for the proper
functioning of electrical equipment. Wind turbines with improved control sys-
tems and fast response capabilities can participate in FCR. When a sudden fre-
quency deviation occurs due to power supply and demand imbalances, these
wind energy systems can adjust their power output rapidly to help bring the
frequency back to its nominal value. This response can happen in seconds and
provides valuable support in stabilizing the grid during transient disturbances.
Wind turbines need control algorithms to quickly detect frequency deviations,
estimate the required power adjustment, and implement the necessary changes
to their power output to participate in the FCR market. The responsiveness of
wind turbines in FCR can mitigate the initial impact of disturbances and reduce
the need for traditional synchronous generators to provide all the frequency sup-
port [62].
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Figure 1.5: Ancillary services activation time [62].

Frequency Restoration Reserve (FRR) capacity: This ancillary product
refers to the additional power generation capacity kept in reserve to be activated
when needed. It is a backup to ensure sufficient supply to meet unexpected
changes in demand or supply disruptions. Both conventional power plants
and flexible resources such as energy storage systems or demand response can
provide reserve capacity. In addition to traditional reserve capacity, Manual
Frequency Restoration Reserve (mFRR) and Automatic Frequency Restoration
Reserve (aFRR) are specialized reserves used for frequency restoration after a
large-scale disturbance or blackout. These reserves can be activated to restore
the grid’s frequency and stability [62].

Replacement Reserve (RR): This capability represents the active power re-
serve that can be utilized to replenish and maintain the necessary level of FRR
and remain ready to address additional system imbalances, such as generation
reserve requirements. The activation of FRR is initiated manually in response
to system optimization by the system operator.

The diagram presented in Figure 1.5 illustrates the order in which the men-
tioned frequency control services are engaged by the Belgian Transmission Sys-
tem Operator (Elia) in response to a system imbalance. Inertia support takes
immediate action, while FCR respond within a few seconds, achieving full ac-
tivation within 30 seconds to address any disparities between power generation
and load, with the primary goal of mitigating frequency deviations. Frequency
Restoration Reserves FRR are initiated after 30 seconds to restore the system
frequency to its nominal value following the imbalance. RR are committed
within 15 minutes to reload FRR for potential future system imbalances.
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Voltage Control: Ancillary services related to voltage control help maintain
the grid’s voltage levels within predefined limits. Voltage is essential for the
proper operation of electrical devices and equipment. Voltage control services
involve adjusting reactive power flows, voltage regulation equipment, and co-
ordination between generators and voltage control devices to maintain voltage
stability and optimize the grid’s performance [63, 64].

Black Start Capability: Black start capability is the ability of power plants
or other resources to restore the power grid after a complete blackout or system-
wide failure. Power plants with black start capability can restart their operations
without an external power supply and initiate the gradual restoration of power
to the rest of the grid. This service is critical for grid resilience and ensuring
rapid recovery from severe disruptions [65].

System Restoration: System restoration services involve the coordinated
and sequential process of bringing the entire power system back online after
a significant disruption or blackout. It includes prioritizing power restoration
to critical infrastructure, synchronizing power plants, and gradually restoring
power to different areas and customers. System restoration services aim to min-
imize downtime and restore electricity supply safely and efficiently [66].

The services discussed in this section can be efficiently provided at both the
wind turbine and wind farm control levels. System Restoration and Black Start
Capability, vital for grid recovery during blackouts and system-wide failures,
are uniquely feasible for offshore wind farms to execute. Their location and
scale make offshore wind farms well-suited for supporting the grid’s restora-
tion in such critical situations. Wind farms can contribute to system restora-
tion by injecting power and aiding grid stabilization during blackout recovery,
while their gradual power ramp-up can ensure smooth integration. Some wind
turbines, designed with black start capability, can participate in restarting the
power system independently after a total blackout, contingent on features like
islanding, synchronization, and communication. Integration of wind turbines
into these processes demands careful planning and coordination with grid in-
frastructure [67].

1.2.3 Market mechanisms for the provision of ancillary services
Market mechanisms refer to the institutional frameworks and processes estab-
lished to facilitate the buying and selling of electricity and ancillary services in
a regulated market environment [68,69]. These mechanisms play a critical role
in ensuring the efficient provision of ancillary services and the reliable opera-
tion of electricity systems. In Europe, market mechanisms consist of various
types of markets, including day-ahead and intraday markets, and energy and
reserve markets.

Day-ahead markets serve as a primary platform for market participants,
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such as generators, retailers, and traders, to submit their bids and offers for
energy supply and demand for the following day. These markets enable par-
ticipants, including offshore wind farms, to adjust their production schedules
based on market outcomes, facilitating efficient resource allocation and price
discovery. Offshore wind farms can participate in day-ahead markets by sub-
mitting their expected energy production and offering ancillary services such
as reserve capacity to enhance grid stability.

The intraday market provides a more flexible and dynamic trading platform
closer to real-time operations as a complementing program to the day-ahead
market. Market participants, including offshore wind farms, can adjust their
positions and trade energy in shorter time intervals, allowing them to respond to
unexpected changes in supply and demand. Offshore wind farms participating
in the intraday market can optimize their generation schedules in real-time,
contributing to grid balancing and reducing the need for corrective measures.

Energy markets form the backbone of electricity trading, enabling the buy-
ing and selling of electricity across different timeframes, including the day-
ahead and intraday periods. Offshore wind farms can participate in energy
markets by offering their generated electricity for sale. Reserve markets focus
on ensuring the availability of reserves to address sudden changes in supply
or demand, and maintain system stability. Offshore wind farms can partici-
pate in reserve markets by offering their capabilities to provide reserves, such
FCR or aFRR. Offering their resources as reserves, offshore wind farms can
contribute to the reliable operation of the grid and help mitigate potential im-
balances [68, 69].

Belgium, as an example, has established a well-defined market mechanism
for providing ancillary services, including those related to offshore wind. The
Belgian ancillary service market enables offshore wind farms to participate and
provide various services to support the grid. Next to offering reserve capacity,
they can also participate in an imbalance settlement mechanism, which allows
them to adjust their energy production based on real-time grid conditions and
market signals [70, 71].

The participation of offshore wind in market mechanisms, including day-
ahead or intraday for energy and reserve markets, enhances the flexibility and
efficiency of the electricity system. It allows offshore wind farms to monetize
their energy production and ancillary services, incentivizing their participation
and contribution to grid stability. Moreover, integrating offshore wind in mar-
ket mechanisms supports the overall decarbonization efforts and the transition
to a more sustainable energy system [68,69].
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1.2.4 Benefits and challenges of integrating wind energy into an-
cillary services markets

To provide ancillary services holds certain challenges so that offshore wind
farm resources can effectively participate and optimize in ancillary services
markets. We first list below the benefits of integrating wind energy conversion
systems into these markets, followed by the challenges.

Benefits:

• Enhanced Grid Stability: Wind farms can respond quickly to changes in
wind conditions can provide valuable ancillary services for grid stabil-
ity. By participating in frequency regulation, wind farms can adjust their
power output in real-time to help balance the supply and demand of elec-
tricity. This contributes to maintaining grid frequency within acceptable
limits, reducing the need for conventional power plants to provide fre-
quency regulation services.

• Increased Renewable Energy Integration: Integrating wind farms into
ancillary services markets facilitates growing wind energy. Wind farms
can offer reserve capacity and voltage control services essential for re-
liable grid operation. This helps to address the intermittency and vari-
ability associated with wind power generation, supporting the reliable
integration of a higher share of renewable energy sources.

• Cost Reduction: Participation in ancillary services markets can provide
additional revenue streams for wind farm operators. By monetizing their
ability to provide ancillary services, wind farms can offset operational
costs and potentially reduce the overall cost of renewable energy gener-
ation. This can make wind energy more economically competitive with
conventional sources, accelerating the transition to a cleaner energy mix.

Challenges:

• Technical Challenges: Integrating wind farms into ancillary services
markets requires addressing technical challenges associated with wind
power’s intermittent and variable nature. Wind farms must be equipped
with optimal control strategies and forecasting techniques to accurately
predict their power output and respond to real-time grid signals. This
necessitates the development of sophisticated models and algorithms for
efficient scheduling and dispatch of wind farm resources. Additionally,
advancements in control systems are needed. This includes the devel-
opment of desired control algorithms that can handle the complexity of
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multiple wind turbines operating in coordination to provide grid support
services.

• Forecasting and Scheduling Challenges: Accurate forecasting of wind
power generation is a fundamental key for effective participation in an-
cillary services markets. Wind farms need to provide accurate forecasts
of their power output to ensure proper planning and coordination with
other resources. Additionally, wind farms may face challenges aligning
their operational schedules with market requirements to effectively de-
liver the contracted ancillary services.

• Market Design and Regulations: Integrating wind farms into ancillary
services markets requires appropriate market design and regulations.
Clear rules and mechanisms should be established to enable wind farms
to participate effectively, ensuring fair competition with other market
players. Additionally, the regulatory framework should incentivize
the provision of ancillary services by wind farms and promote their
integration into the broader energy system.

• Grid Infrastructure and Interconnection: The successful integration of
wind farms into ancillary services markets depends on the availability
and adequacy of grid infrastructure and interconnection. The grid must
be capable of accommodating the additional power flows and fluctua-
tions resulting from wind farm participation. Upgrading and expanding
the grid infrastructure, including transmission and distribution networks,
may be necessary to accommodate the integration of wind farms and en-
sure smooth operation and reliable delivery of ancillary services.

• Market Access and Participation: Wind farm operators need to have fair
and non-discriminatory access to ancillary services markets. This re-
quires transparent and efficient market platforms that enable easy partic-
ipation and provide accurate price signals. Ensuring equal market access
for both conventional and renewable energy resources promotes compe-
tition, fosters innovation, and encourages the efficient utilization of wind
farm assets.

• System Coordination and Planning: Coordinating the operation and
planning of wind farms participating in ancillary services markets with
other grid assets is essential. The integration of wind farms should
be aligned with system-level planning and coordination to ensure the
reliable and secure operation of the overall energy system. This includes
considering the impact of wind farm participation on system reserves,
stability, and congestion management.
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Figure 1.6: Two-stage stochastic programming framework for op-
timal contribution in ancillary services market.

1.2.5 Optimal contribution in ancillary services market

Decision-makers need to plan strategically based on the available information
and future uncertainties. To maximize the contribution of wind farms in ancil-
lary markets while effectively considering the inherent uncertainty associated
with wind scenarios, an optimization problem is needed. To find the decisions
that need to be made, a two-stage approach that looks at the day-ahead market
(first stage) and the real-time (second stage, within the day) operation is typ-
ically needed. Figure 1.6 illustrates these two stages. The mathematical tool
that can be specifically used to make the optimization is a two-stage stochastic
programming approach [72–74].

In the first stage, decisions are made before the uncertain parameters of
wind power generation are realized. This stage aligns with the day-ahead mar-
ket, where wind farm operators must determine their optimal bids or offers
for ancillary services based on available information at that time. This in-
cludes forecasts of wind power generation, market prices, and system require-
ments [75]. Subsequently, in the second stage, decisions are made based on
the realized values of the uncertain parameters. This stage corresponds to the
real-time operation of the ancillary market, where wind farm operators need
to adjust their actual generation and ancillary service provision based on the
actual wind power generation and system conditions. The decisions made in
the first stage may need to be revised or updated to respond to the real-time
variability of wind power [75].

The primary goal of two-stage stochastic programming is to find the opti-
mal decisions in the first stage that maximize the expected profit or minimize
the expected cost, considering the uncertainties in wind power generation. This
is achieved by considering various scenarios of wind power generation and their
corresponding probabilities. The optimization problem seeks to find the best
dispatch of wind farms and their participation in ancillary services that mini-
mize the expected costs or maximize the expected revenues, accounting for the
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probabilistic nature of wind power forecasts [73].
Applying the above mentioned two-stage planning enables wind farm oper-

ators to effectively manage the uncertainties associated with wind power gen-
eration and make informed decisions in the ancillary market’s day-ahead and
real-time stages. This approach allows them to optimize their participation and
contribution to the market while considering the probabilistic nature of wind
power forecasts. By doing so, wind farms can improve their overall efficiency
and reliability in providing FCR and other ancillary services to the electricity
grid [73].

1.3 Curtailing wind energy to provide FCR

FCR, with its immediate response capabilities and grid frequency regulation,
plays a critical role in maintaining a steady power supply and preventing fre-
quency deviations. Understanding FCR and other ancillary services is crucial
as the energy sector undergoes an energy transition, necessitating effective in-
tegration of renewable energy sources and enhanced grid resilience. The op-
timization of ancillary services deployment enables compliance with regula-
tory requirements, techno-economic efficiency, and the utilization of advanced
technologies for grid stability.

Nevertheless, it is worth mentioning that if an optimal control design and
framework of an energy system can support FCR provision, it possesses the
necessary features to respond swiftly to grid frequency deviations and adjust
power generation accordingly. Such capabilities can be exploited to contribute
to other ancillary services that demand similar fast or slower response times
and real-time adjustments. As mentioned in Section 1.2.4, there are technical
challenges associated to integrating wind farms into ancillary services that can
be mainly attributed to the intermittent and variable nature of wind. This is no
different to consistently and reliable provide FCR. The limited controllability of
wind turbines compared to conventional power plants also hampers their ability
to meet the fast response times required for FCR provision.

Curtailment is one potential solution to address this challange. It is however
generally seen as a measure of last resort due to its impact on wind farms’
overall efficiency and revenue generation. To illustrate this, Fig. 1.7 shows the
cost of curtailment in the UK per MWh of wind energy produced. Curtailment
involves intentionally reducing or restricting wind power generation when the
grid cannot absorb or accommodate the available wind power. By curbing the
power output, wind energy conversion systems can prevent grid overloading,
maintain grid stability, and address operational constraints [76].

While curtailment can help manage grid constraints and ensure reliabil-
ity, it is not an ideal solution [78]. Curtailing wind power generation means
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lost potential energy production and reduced revenue for wind farm operators.
Maximizing the utilization of renewable energy resources and minimizing cur-
tailment is preferable to achieve the highest possible renewable energy pene-
tration and cost-effectiveness. To minimize the need for curtailment, several
strategies are being followed:

• Grid Expansion and Transmission Upgrades: Enhancing the grid infras-
tructure, including expanding transmission capacity and improving in-
terconnections, allows for better integration of wind energy and reduces
the need for curtailment.

• Enhanced Forecasting and Grid Management: Accurate wind power
forecasting and efficient grid management systems help optimize the
utilization of available wind resources, reducing the likelihood of
curtailment.

• FlexibleGridOperation: Implementing flexible grid operation strategies,
such as demand response programs, load shifting, and energy storage
integration, enables better-balancing wind power generation with grid
demand, minimizing curtailment.

• Market Reforms and Incentives: Adapting market mechanisms, pricing
structures, and incentive schemes to value the flexibility and services
provided by wind energy encourages efficient utilization of wind power
and reduces the need for curtailment.

Figure 1.7: Over the past ten years, the yearly reduction of wind
energy generation in UK [on the left] and the associated cost of
curtailment per producedMWh of wind energy [on the right] [77].
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1.3.1 Providing Frequency Containment Reserve with wind tur-
bine controllers

To support FCR by using curtailment methods, wind turbines employ various
control strategies and techniques [79, 80]. These strategies aim to adjust the
power output of wind turbines in response to grid frequency deviations. One
such control strategy is the deloading of wind turbines.

Wind turbines require a deloading mechanism and a power reserve margin
to adapt their active power output according to grid frequency changes. Par-
ticularly, during wind speeds below the rated threshold, the reserve should be
factored in to ensure the wind turbine operates optimally relative to the Maxi-
mum Power Point Tracking (MPPT) system. The deloading control mechanism
involves intentionally reducing the power generation from the wind turbine be-
low its maximum capacity. By operating the wind turbine below its rated power
level, it retains the ability to quickly ramp up its power output when necessary,
effectively serving as a power reserve for the grid. This reserve capability is cru-
cial to support grid stability and meet sudden increases in power demand. The
deloading process does not compromise the turbine’s long-term performance
or health; instead, it enhances its flexibility to respond to grid requirements
efficiently. During low wind speeds or other situations where curtailment is
necessary, the wind turbine can seamlessly adjust its output, preventing any
adverse impact on the grid. The power reserve margin acts as a safety buffer,
ensuring the turbine can respond swiftly to frequency deviations and maintain
grid frequency within acceptable limits. This dynamic adaptation allows wind
turbines to actively participate in grid frequency regulation actively, enhancing
the grid’s stability and reliability [79,80]. Here are some commonly employed
control strategies and techniques:

• Feathering the Blades: One of the primary deloading methods is feather-
ing the blades of wind turbines. Feathering refers to changing the angle
of the turbine blades to reduce their aerodynamic efficiency. Wind tur-
bines can reduce their power output by increasing the blade angle and
decreasing the electricity injected into the grid. Feathering is typically
achieved through pitch control mechanisms, introduced in Section 1.1.2
that adjust the angle of the blades based on frequency signals received
from the grid [81].

• Generator Control: Wind turbines can employ generator control tech-
niques to deload power output. Generator control involves adjusting the
generator settings, such as rotor speed and mechanical power, to regulate
the electrical power output of individual turbines or the entire wind farm.
By modifying these control parameters, wind turbines can deload their
power generation and support FCR provision [80].
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• Deloading by SubstationControl: In some cases, deloading can be imple-
mented at the substation level rather than at the individual turbine level.
Substation control systems enable centralized curtailment of power out-
put from multiple turbines within the wind farm. By adjusting the sub-
station control settings, wind farms can collectively curtail their power
generation in response to grid frequency deviations [82].

• Communication and Control Systems: Innovative communication and
control systems can be employed in coordinating the deloading of wind
turbines for FCR provision. These systems enable the exchange of fre-
quency signals between grid operators and wind farm control centers.
Real-time data on grid frequency deviations is used to trigger deloading
actions and adjust the power reserve of wind turbines accordingly. These
systems ensure timely response and coordination between wind turbines
and the grid.

These control strategies and techniques are typically employed as part of a
broader control system that considers factors such as wind farm operational
constraints, grid requirements, andmarket signals. High-techmonitoring, com-
munication, and control technologies facilitate the effective implementation
of these control strategies, enabling wind turbines to provide FCR services
through deloading methods while ensuring the reliable and efficient operation
of the electricity grid.

1.3.2 Providing Frequency Containment Reserve with wind farms
To provide FCR on a wind farm level demands the consideration of the wake
effect. As mentioned in Section 1.1.3, the wake interactions in wind farms
are a complex behavior that is difficult to fully simulate. Sophisticated control
systems are needed to ensure effective activation while coping with optimized
power reserves. To support FCR using deloading methods in wind farms, a
combination of optimization techniques and an adaptive control strategy needs
to be employed, considering both the wake effect and optimal power reserve
activation.

One critical aspect is the implementation of wake modeling and prediction
techniques. These methods estimate the wake effects on downstream turbines
by analyzing wind speed, direction, and turbulence data. By incorporating
wake models into the control systems, wind farms can predict the spatial and
temporal characteristics of the wake, enabling optimized curtailment strategies.

Wake-aware curtailment techniques are employed to account for the wake
effect. The control systems prioritize the deloaded turbines based on their lo-
cation in wake-affected areas to minimize the overall power loss while main-
taining efficient FCR provision. By dynamically adjusting power reserve levels
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based on real-time wake conditions, wind farms can balance power generation
and mitigating the wake impact [83].

Additionally, wind farms may adopt various wake mitigation techniques.
These measures aim to reduce the wake effect and enhance power generation
efficiency. Strategies include optimizing turbine spacing, adjusting operating
parameters, and utilizing optimal wake control technologies. By mitigating the
wake effect, wind farms can potentially minimize the need for curtailment and
maximize the overall power output [84].

Furthermore, wind farm layout design is the primary element in address-
ing the wake effect. Wind farms can reduce wake interactions through careful
placement and optimization of turbine positions. Innovative algorithms and
simulation tools assist in determining the optimal layout configuration that re-
duces wake effects, maximizing power generation and minimizing curtailment
requirements [73].

Combining improved control systems, wake modeling and prediction,
wake-aware curtailment techniques, wake mitigation strategies, and layout
optimization allows wind farms to effectively support FCR provision while
accounting for the complex nature of wake effects. These strategies ensure
efficient utilization of wind resources, optimal power generation, and grid
stability while minimizing power losses in wind farms due to curtailment.
By continuously refining these techniques, wind farms can contribute to the
reliable and responsive operation of the electricity grid while exploiting the
full potential of wind energy.

Wind farms can seamlessly integrate with the grid and actively contribute
to grid stability by providing FCR. To improve control and adapt to the complex
environment, variable wind, markets, etc., demands data-driven techniques.
These techniques, with, amongst others, deep learning, have impacted various
fields and can help wind farms adapt to their environment while executing their
task to the best of their abilities: maximize power generation and provide ancil-
lary services. Deep learning techniques have, for instance, been used for fore-
casting as they have the ability to analyze historical data and apprehend complex
patterns. Next to forecasting, they can be used to identify anomaly detection
methods when systems deviate from nominal operation. This enhances the
decisions to perform maintenance interventions. Finally, such methodologies
can analyze real-time sensor data and related features to optimize, for instance,
power generation and curtailment decisions. Overall, data-driven approaches
can be due to their ability to find patterns in data and handle the uncertain nature
of the environment in wind farms.



i
i

i
i

i
i

i
i

1.4 Data-driven approaches supporting wind energy integration 25

1.4 Data-driven approaches supporting wind energy
integration

Traditional models that apprehend the behavior of wind energy conversion sys-
tems often rely on simplified assumptions and theoretical equations, which may
not capture the complexities of turbine behavior. In contrast, data-driven mod-
els can process and learn from data to find input-output relationships. The data
or features can be turbine sensor measurements, historical performance data,
and even meteorological conditions. Supervised learning - a subfield in ma-
chine learning - is used to train a model that is often a neural network, i.e., a
deep learning model, that approximates the input-output relationship. These
data-driven models enable to close the reality gap that traditional models face
and facilitate the development of more effective control strategies [85].

Adaptive control strategies can benefit from data-driven methodologies by
learning from historic and real-time sensor data. These algorithms learn from
the operational data and identify patterns that correlate with optimal turbine
behavior. By adapting control strategies to changing operating conditions, such
as wind speed and grid requirements, data-driven-based control systems can
enhance turbine efficiency, reduce wear and tear on components, and extend
the turbine’s lifespan [86].

Moreover, data-driven techniques have the potential to transformwind farm
modeling and control approaches by exploring and exploiting vast amounts of
data to create more accurate and sophisticated wind farm models. These mod-
els can capture interactions between turbines, terrain, and atmospheric con-
ditions, leading to more precise predictions of power generation and overall
wind farm performance. Additionally, deep learning algorithms can optimize
wind turbine control strategies and wake steering techniques, maximizing en-
ergy capture and mitigating wake effects. This, in turn, enables wind farms to
be smoothly integrated into the power grid, allowing grid operators to manage
power generation and demand more effectively [87].

Section 1.4.1 handles the data collection and preprocessing related to wind
energy. In the subsequent sections, we provide an overview of data-driven
methodologies that can help to model and predict (Section 1.4.2), control (Sec-
tion 1.4.3), and monitor (Section 1.4.4) wind energy conversion systems.

1.4.1 Data collection and preprocessing
Data preprocessing is a crucial initial step to build up data-driven models of
wind turbines [88]. It encompasses several key techniques that enhance data
quality and suitability for further analysis. One fundamental aspect of data
preprocessing is data cleaning. This involves the identification and removal
of outliers in the dataset. Outliers can significantly skew the training process
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of machine learning models, potentially leading to less accurate results. Ad-
dressing missing data is also essential, as missing values can introduce biases.
In practice, techniques like interpolation or data imputation are employed to
handle these missing values effectively. Another essential preprocessing tech-
nique is feature scaling, which aims to standardize the range of features within
the dataset. Normalizing or standardizing the data ensures that all features con-
tribute equally to the learning process, preventing any variable from dominating
the model’s training.

Feature engineering is another aspect of data preprocessing. This step in-
volves selecting relevant features, creating new features, or transforming ex-
isting ones to enhance the predictive power of the data. Domain knowledge
is vital in determining the most informative features, especially in specialized
fields like wind turbine control. Temporal aggregation techniques are com-
monly employed for time series data from wind turbines, which are often col-
lected at high frequencies. These techniques, i.e., averaging or resampling,
reduce data dimensionality while providing meaningful representations of un-
derlying patterns, simplifying subsequent analysis. Eventually, efficient data
storage and accessibility are required when implementing machine learning al-
gorithms, especially in wind turbine control systems. Properly managed data
storage solutions, such as balanced database systems, cloud-based solutions,
or data lakes, ensure that collected and preprocessed data is readily available
for model training and inference, facilitating the overall success of machine
learning applications in this domain.

By addressing these considerations, wind turbine operators can ensure the
availability of high-quality data for training machine learning models. This,
in turn, enables accurate prediction, fault detection, condition monitoring, and
optimization of wind turbine operations. Continued research and development
in data collection techniques, preprocessing methodologies, and data manage-
ment systems are required to improve further the potential of machine learning
algorithms in wind energy applications.

1.4.2 Data-driven time series prediction methods

Time series predictions involve data-driven techniques that can forecast wind
and grid frequency, enabling effective planning and management of wind en-
ergy integration into the power grid [89, 90]. Time series prediction models
can provide valuable insights into future wind conditions and grid frequency
behavior by analyzing historical data patterns. This information aids in opti-
mizing energy generation, grid stability, and resource allocation. An overview
of statistical models and machine learning methods that are widely used in time
series prediction, modeling, and control approaches in the field of wind energy:
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• Autoregressive Integrated Moving Average (ARIMA): ARIMA models
are widely used for time series prediction, including wind and grid fre-
quency forecasting [91]. ARIMA models capture the data’s underlying
trend, seasonality, and noise to make future predictions. They are partic-
ularly suitable for stationary time series, where the statistical properties
remain constant.

• Seasonal ARIMA (SARIMA): SARIMA models extend the capabilities
of ARIMA by incorporating seasonality patterns. This is especially rele-
vant for wind and grid frequency data exhibiting regular seasonal varia-
tions. By capturing both short-term fluctuations and long-term seasonal
patterns, SARIMA models can provide accurate forecasts for different
time horizons [92].

• Recurrent Neural Networks (RNNs): RNNs are designed to handle se-
quential data and are widely used for time-series prediction. Unlike feed-
forward networks, RNNs have feedback connections, allowing informa-
tion to flow in cycles within the network. This enables the network to
retain memory of past inputs and consider temporal dependencies when
making predictions. The recurrent nature of RNNs makes them suitable
for modeling, pattern recognition, and time-series prediction tasks. Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are pop-
ular variants of RNNs that address the vanishing gradient problem and
improve the ability to capture long-term dependencies [93].

• Convolutional Neural Networks (CNNs): CNNs are primarily known for
their success in image recognition tasks, but they can also be applied
to time-series prediction. CNNs are designed to extract spatial features
from 2D inputs, but time-series data can be treated as a 1D signal and
processed with CNNs. Using 1D convolutions and pooling operations,
CNNs can effectively capture local patterns and hierarchically learn rep-
resentations in time-series data. CNNs are particularly useful when spa-
tial or localized patterns exist in the time series, such as in wind speed
prediction [94].

• Adaptive Neuro-Fuzzy Inference Systems (ANFIS) is a hybrid modeling
approach that combines the capabilities of neural networks and fuzzy
logic. ANFIS models have been widely used for time-series predic-
tion and other data-driven tasks. ANFIS provides a flexible framework
for modeling complex relationships between input variables and output
predictions while incorporating human-like fuzzy logic reasoning. This
mathematical framework allows for approximate reasoning and handling
of uncertainty. It is beneficial when dealing with data exhibiting a high
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level of stochasticity. Fuzzy logic enables representing vague or impre-
cise relationships between variables through linguistic rules and mem-
bership functions [95].

• GroupMethod of Data Handling (GMDH) is a data-driven modeling and
regression technique used for modeling complex systems and making
predictions. GMDH is known for its ability to automatically select rel-
evant input variables and construct mathematical models based on the
available data. GMDHmodels have been successfully applied to various
domains, including time-series prediction, pattern recognition, and data
analysis. GMDH is based on the principle of self-organization, where a
complex system is modeled by iteratively selecting and combining input
variables to optimize the model’s predictive performance. GMDH aims
to find an optimal mathematical model that can accurately represent the
relationship between the input and output variable [96].

• Hybrid Models: Hybrid models combine the strengths of different ma-
chine learning architectures to improve time-series prediction. For ex-
ample, combining CNNs and RNNs in a hybrid model, such as a Convo-
lutional Recurrent Neural Network (CRNN), allows the network to cap-
ture spatial and temporal patterns. This fusion of architectures takes ad-
vantage of the power of CNNs in feature extraction and RNNs in mod-
eling sequential dependencies, resulting in improved prediction accu-
racy [97, 98].

The choice of data-driven based methods for time series prediction depends on
the system’s specific characteristics, data availability, seasonality, trend, and
noise. Furthermore, the models should be regularly updated with new data to
ensure accurate, up-to-date, and dynamic prediction. The continuous advance-
ment of machine learning techniques presents exciting opportunities for further
improving time series prediction inwind and grid frequency forecasting and un-
derstanding the nonlinear complexity of wind turbines, enabling more reliable
and efficient integration of wind energy into the power grid.

1.4.3 Recently developed control approaches
Conventional control approaches, such as Proportional-Integral (PI) control
systems, have been widely employed to regulate various aspects of wind tur-
bine operation. The pitch control system adjusts the blade angles to regulate
the aerodynamic force and maintain a constant rotational speed, optimizing
power output and preventing damage in varying wind conditions. Meanwhile,
the torque control system manages the generator’s torque, controlling the elec-
trical power generated by the turbine. Both systems are required for efficient
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Figure 1.8: Classical control systems in wind turbines with pitch
and generator torque control systems.

and safe operation, capturing maximum wind energy while safeguarding the
turbine from potential harm caused by extreme forces. Figure 1.8 shows clas-
sical pitch and torque controllers in wind turbines. To adapt the operation of
wind turbines and farms in the face of uncertain environmental conditions, data-
driven control methodologies can be devised, ranging from adapting the gains
in PI controllers to data-driven-based model predictive controllers (MPC) to
full-blown black box Reinforcement Learning (RL). All these controllers start
from a certain state of the system, which can be based directly on sensor data
or extracted from data, to take actions, e.g., pitch angle and generator torque.

Adaptive gain scheduling PI

By continuously adjusting the control gains of PI controllers, the controller
can adapt to changing wind speeds, turbulence, and environmental conditions.
Such adaptive control has the potential to adapt the turbine to capture maxi-
mum energy and manage loads within safe limits, mitigate turbulence effects,
improve grid integration, enhance overall reliability, and reduce maintenance
costs, ensuring efficient and sustainable wind power generation. In that respect,
adaptive gain scheduling fuzzy PI control is a promising approach for optimiz-
ing wind turbine operation. This method combines the benefits of fuzzy logic
and adaptive control to enhance the performance and robustness of wind tur-
bines [99]. Using linguistic rules andmembership functions, the control system
can make decisions based on fuzzy inputs and continuously adjust its param-
eters to optimize turbine performance. The adaptive gain scheduling aspect
further improves the control system’s adaptability, dynamically adjusting the
gains of the PI controller based on real-time data and system conditions. This
allows wind turbines to operate closer to their optimal performance, leading to
increased energy production and reduced wear and tear on the system [100].
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Data-driven approaches and machine learning tools present new opportunities
for adaptive and intelligent control of wind turbines and offer promising solu-
tions to address the challenges that conventional control systems face.

Data-driven tools enable the creation of accurate models for wind turbines
and wind farms, considering the complex dynamics, non-linearities, uncertain-
ties, and even wake interaction inherent in wind energy systems [101, 102].
Neural networks, for example, can be trained using historical data to learn the
relationships between inputs (e.g., wind conditions, turbine locations) and out-
puts (e.g., power output, turbine performance) while accounting for wake ef-
fects [101]. These models can then be used for control system optimization,
layout design, and other tasks related to wind farm management.

To address wake interaction, machine learning methods can be applied to
develop sophisticated models that capture the complex flow patterns and inter-
actions within wind farms. These models can consider factors such as wind
direction, wind speed, turbine spacing, and the layout of turbines to predict the
wake effects and optimize the overall performance of the wind farm [101,103].
The accurate modeling can enhance control strategies in wind turbine and wind
farm systems, specifically for addressing wake interaction and optimal reserve
allocation considering theWind farm’s contribution in energy and reserve mar-
kets [73].

Data-driven MPC

Classically, model predictive control uses a physics-based model of the system
that needs to be controlled. The corresponding optimal actions can be found
by solving an optimization problem that maximizes (or minimizes) a certain
reward (or cost) function, e.g., maximum power. By using the model’s predic-
tive capabilities, it is possible to foresee what the optimal control actions can
be in the future.

Since physics-based models face a reality gap, i.e., they are subject to un-
certainties, which is typically the case for wind turbines, the actions can become
suboptimal. By using a data-driven model that is trained on historical and/or
real-time data, a predictive model that better aligns with the real-world system
can eventually be obtained. By optimizing a cost function with an underlying
data-driven model, corresponding optimal control actions can be found.

Data-drivenmodel predictive control (MPC) strategies can be implemented
to anticipate changes in wind speed and direction, proactively adjusting the
turbine’s parameters to maximize energy capture and minimize fatigue loads.
Moreover, these methods can learn from historical data and real-time mea-
surements, allowing turbines to continuously improve their control strategies
and adapt to complex and dynamic wind patterns [104–106]. Additionally,
coordinated control of wind farms through creative optimization algorithms



i
i

i
i

i
i

i
i

1.4 Data-driven approaches supporting wind energy integration 31

Figure 1.9: Schematic of a data-driven MPC methodology con-
sisting of a neural network model that is being updated based on
measurement data 𝑦(𝑘) and control inputs 𝑢(𝑘), with delay 𝑧−1.
The data-driven model is nonlinear and can be linearized G(k) at
each time instant to predict the behavior of the wind turbine (Pro-
cess). The predictive behavior of the model is used to find the
control actions u(k) by optimizing a cost function. This cost func-
tion can for instance be the tracking of a reference power value
𝑦𝑟𝑒 𝑓 (𝑘) to what the model predicts and the current power value
𝑦0(𝑘) [110].

enables efficient power and reserve distribution and enhanced grid integra-
tion [107,108].

Adaptivity can be realized in a classical MPC approach by adapting the
model parameters. A similar strategy can be followed in data-driven MPC
where the model is continuously updated with adjusted control actions based
on real-time data [104, 109]. Figure 1.9 consists of a nonlinear data-driven
model, here a neural network model, that is linearized and where a quadratic
optimization is done of the cost function. The underlying model can be updated
based on sensor data. The loop is in feedback to have stability and robustness to
unmeasured disturbances, which need to be analyzed each time. On the wind
farm supervisory level, by incorporating information about wake interaction
into the model, data-driven MPC can generate control strategies that account
for the wake effects and optimize the wind farm’s power output [73].

Reinforcement learning

Machine learning with supervised learning can be used to train a neural net-
work model like in Fig. 1.9. Another strategy is using Reinforcement Learning
(RL), a subfield different from supervised learning in machine learning. Re-
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Figure 1.10: Reinforcement learning framework:𝐴𝑡 is the action
taken by the agent at time t, 𝑆𝑡 is the state of the environment at
time t, and 𝑅𝑡+1 stands for the reward at time 𝑡 + 1 [114].

inforcement learning is an agent that, based on the state of the system, e.g.,
measurement data related to the wind speed, rotor speed, and power output,
optimizes short-term and long-term rewards, e.g., maximum power output. It
does so by adjusting the control actions like rotor pitch and/or generator torque.

A simulation model approximating system dynamics can be employed to
train RL agents, which typically require many interactions with the environ-
ment to learn a control policy. In the case of less complex systems/operations,
running RL methods in real time can be facilitated by applying adaptive meth-
ods such as dynamic programming approaches. Nevertheless, developing ac-
curate simulation models that faithfully represent system dynamics in wind tur-
bines and wind farms also smoothes the transition from simulated training to
real-world applications and minimizes the reality gap that demands real-world
interactions. The state of the environment can involve parameters such as wind
speed, rotor speed, and power output, and the agent’s actions, such as adjust-
ing rotor pitch or turbine yaw angles [111]. As shown in Fig. 1.10, a reward
function is designed to provide feedback to the agent, guiding it toward opti-
mal control actions. RL algorithms, such as deep Q-network (DQN) and deep
deterministic policy gradient (DDPG), are used to train the agent by iteratively
interacting with the environment, learning from experience, and updating con-
trol policies [112, 113].

Comparing data-driven MPC with RL

The above mentioned data-driven methodologies have the ability to address the
following challenges:

• Handling Complexity and Non-Linearity: Wind turbine and wind farm
control systems involve complex dynamics and non-linearities that can
be challenging to model accurately using traditional control methods.
Data-driven MPC and RL have the ability to learn from historical data
and adapt to the system’s non-linear behavior, allowing them to capture
complex relationships and make better control decisions.
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• Adaptability and Flexibility: Data-driven MPC and RL excel in adaptive
control. Wind conditions in a wind farm are dynamic and can change
rapidly. Data-drivenMPC continuously updates systemmodels based on
real-time data, while RL agents learn optimal control policies through in-
teractions with the environment. This adaptability allows these strategies
to adjust to changing conditions and uncertainties, optimizing control ac-
tions in real-time.

• Handling Uncertainties: Wind energy systems, like wind farms, are sub-
ject to various sources of uncertainties, such as fluctuating wind speeds
and directions. Data-driven MPC and RL can account for these uncer-
tainties and optimize control actions while considering possible varia-
tions in the system behavior. This robustness to uncertainties is crucial
for achieving stable and efficient operation.

• Enhanced Performance through Learning: Both data-driven MPC and
RL can potentially improve the performance of control systems beyond
what traditional control methods can achieve. They can learn from past
experiences and adjust their control strategies to achieve better power
output, minimize wake losses, and optimize overall system performance.

• Handling High-Dimensional State Spaces: In wind turbine and wind
farm control, the state space can be high-dimensional, involving multiple
variables and parameters to be controlled. Data-driven MPC and RL are
well-suited to handle such high-dimensional state spaces, making them
applicable to complex control tasks.

• Combining Physics-Based Models with Data: Data-driven MPC and RL
can be integrated with physics-based models in a hybrid approach, ex-
ploiting the benefits of both approaches. This hybrid modeling can lead
to more accurate and efficient control strategies, especially when data is
scarce or when there is a need to exploit the knowledge from physics-
based models.

• Autonomy and Minimal Human Intervention: Once data-driven MPC
and RLmodels are trained and deployed, they can operate autonomously,
requiring minimal human intervention. This autonomy is advantageous
in wind farmmanagement, where control actions need to be continuously
adjusted based on real-time data and conditions.

On the other hand, model-based Reinforcement Learning (RL) holds
promise in addressing some of the challenges associated with model-free RL
approaches. One key advantage of model-based RL is its potential for sample
efficiency. By using an internal model of the environment, the agent can



i
i

i
i

i
i

i
i

34 Introduction

simulate trajectories and learn from these simulated experiences, reducing the
need for extensive real-world interactions. This is particularly advantageous
in scenarios where collecting data is resource-intensive, costly, or time-
consuming. The internal model in model-based RL can take various forms,
ranging from simple parametric models to more complex non-parametric
models, such as neural networks. The choice of the model architecture depends
on the characteristics of the environment and the computational resources
available. Advanced model-based RL methods often involve refining the
internal model through a combination of real-world interactions and simulated
learning, striking a balance between exploration and exploitation.

The selection betweenRL and data-drivenMPCdepends on various factors,
including data availability, computational resources, system complexity, and
the desired level of interpretability. Model-free RL algorithms may require a
higher sample complexity as they explore the system dynamics through trial and
error. At the same time, data-driven MPC is more sample-efficient as it uses
existing data. Model-free RL algorithms often operate as black-box models,
making them less interpretable, while model-based RL and data-driven MPC
provide more transparency and interpretability.

Although both approaches have their limitations and challenges, Data-
driven MPC heavily relies on the quality of data and accuracy of system
models. It may not generalize well to different systems or operating condi-
tions, and solving the optimization problem in real time can be computationally
intensive for large-scale wind farms. Model-free RL requires a large number of
interactions with the environment to converge, which can be time-consuming
and costly. Balancing exploration and exploitation can be challenging,
especially in dynamic wind conditions. Ensuring safety and stability during
RL training is required, as exploring untested actions may lead to undesirable
system behavior.

Nevertheless, data-driven MPC can have a few advantages in wind farms
and wind turbine control systems. First, wind farm and turbine control systems
typically have access to a considerable amount of historical operational data.
Data-driven MPCs use data to build accurate system models and optimize con-
trol actions based on past behavior. This historical data can provide valuable
insights into system dynamics. On the other hand, model-free RL typically
learns from scratch through trial and error, which can be inefficient and time-
consuming. Second, wind turbine and wind farm control systems have various
physical and operational constraints and safety limits. Data-driven MPC can
easily incorporate these constraints into the optimization problem, ensuring that
the control actions generated are within safe and feasible ranges. On the other
hand, model-free RL may require additional effort and design considerations
to handle constraints effectively.

Moreover, wind conditions are inherently uncertain, and wind turbine and
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wind farm control systems need to handle these uncertainties effectively. Data-
driven MPC can benefit from continuous model updates using real measured
data, and its robustness to model uncertainties allows it to adapt to changing
conditions and disturbances. Aditionally, data-driven MPC provides practical
and theoretical guarantees on performance and stability under certain assump-
tions [115]. These guarantees are valuable in wind farms and wind turbine
control systems, where ensuring reliable and consistent operation is critical.
Conversely, RL typically needs to provide such performance guarantees, mak-
ing ensuring system stability and safety more challenging.

Meta-heuristic optimization techniques

Furthermore, the incorporation of meta-heuristic optimization techniques
techniques, including Particle Swarm Optimization (PSO), Genetic Algo-
rithms (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO),
Differential Evolution (DE), and Grey Wolf Optimizer (GWO), has opened
up possibilities for advancing wind turbine and wind farm control. When
combined with machine learning methods, these techniques offer a powerful
means to tackle complex and multi-objective optimization challenges in wind
energy systems.

Particle Swarm Optimization (PSO) and Genetic Algorithms (GA),
inspired by natural processes, have appeared as powerful optimization ap-
proaches. They contribute to several critical aspects of wind energy control.
They have been used vastly to fine-tune control parameters, such as optimizing
rotor speed, pitch angle, yaw angle, and other variables to maximize power
output while considering operational constraints and uncertainties. They have
been used to optimize wind farm wake behavior, minimizing losses and en-
hancing overall energy capture, considering factors like wind direction, turbine
spacing, and terrain. PSO and GA aid in model calibration and validation,
improving simulation accuracy and control strategy reliability [116–118].

Considering the unpredictability and nonlinearity of wind energy, where
multiple objectives often clash, PSO and GA still provide promising multi-
objective optimization solutions. They unveil trade-off solutions known as
Pareto fronts, providing decision-makers with a spectrum of optimal choices.
Additionally, these techniques are scalable to large wind farms, efficiently
exploring extensive search spaces for real-time decision-making. They also
smoothly integrate with machine learning models, optimizing neural networks
or reinforcement learning hyperparameters to enhance model performance and
control effectiveness. Moreover, PSO and GA handle non-convex optimization
problems effectively, overcoming local optima and reducing computational
complexity [119].

Particle Swarm Optimization (PSO) is often the preferred choice for opti-
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mizing wind turbine and wind farm control systems because of its simplicity
of implementation, computational efficiency, and minimal hyperparameters,
making it accessible and fast. While not guaranteed, it often converges to global
or near-global optimum solutions. Furthermore, its suitability for continuous
optimization problems, robustness to noise, and parallelizability solidify its po-
sition in wind energy control systems. However, choosing the right optimiza-
tion algorithm requires careful consideration of the specific problem’s charac-
teristics, fitness landscape, and available computational resources. Depending
on complexity and requirements, alternatives such as Genetic Algorithms or
Differential Evolution may warrant exploration.

1.4.4 Health monitoring methods
Health monitoring is another essential area of research in the maintenance and
operation of wind turbines. It involves monitoring various components and sys-
tems of wind turbines to detect faults, diagnose problems, and predict potential
failures. In real-world scenarios, various factors, such as temporary events or
the natural aging process, make wind turbine parts susceptible to malfunctions
and defects. These issues can result in interruptions to the system and financial
setbacks [120]. Anomalies in wind turbine performance that are unforeseen can
be classified as either faults or failures. A fault is identified when there is an
undesirable deviation in the system’s structure or parameters from its expected
state, while a failure is characterized by a system or component’s inability to
carry out its intended function [120]. Figure 1.11 illustrates a pie chart indicat-
ing the distribution of common faults found in wind turbines.

Machine learning techniques have gained significant attention in wind tur-
bine health monitoring due to their ability to analyze large amounts of sensor
data [121, 122]. A valuable strategy to detect faults is to compare the actual
wind turbine behavior with its nominal, healthy behavior. To that end, a digital
twin - a digital model that mimics the behavior of the real-world wind turbine -
can help. How can one build a digital twin? This can be based on data, eventu-
ally merged with a physics-based model, to optimize model parameter values
so that the mathematical model corresponds with the real-world sensor data.
To build such a model, one can use supervised learning, i.e., find data-driven
model parameters, and/or use system identification techniques, i.e., find sys-
tem model parameters and, eventually, system model structures. This leads to
a mathematical model in engineering, often called a surrogate model. Figure
1.12 shows how anomaly detection can be performed based on real-time sensor
data and a wind turbine digital twin. General Electric and Siemens are exam-
ples of companies that follow a strategy to use digital twins towards detecting
anomalies. An overview of the commonly used machine learning approaches
in wind turbine health monitoring is as follows:
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Figure 1.11: Typical malfunctions in wind turbines [120].
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• Supervised Learning: Supervised learning algorithms are trained on la-
beled datasets to learn patterns and make predictions. In wind turbine
health monitoring, supervised learning techniques can be used for fault
classification, anomaly detection, and remaining useful life (RUL) pre-
diction. Key steps in applying supervised learning include data pre-
processing, feature engineering, model training, and model evaluation.
Commonly used algorithms include decision trees, random forests, sup-
port vector machines (SVM), and neural networks [121,123].

• Unsupervised Learning: Unsupervised learning algorithms are utilized
when labeled data is scarce or unavailable. These techniques aim to iden-
tify patterns, clusters, or anomalies in the data without explicit guidance.
Unsupervised learning approaches can be employed for fault detection,
data clustering, and outlier identification in wind turbine health monitor-
ing. Clustering algorithms like k-means and hierarchical clustering, as
well as dimensionality reduction techniques such as principal component
analysis (PCA), are commonly used on this basis [121, 122,124].

• Ensemble Techniques: Ensemble techniques combine multiple individ-
ual machine learning models to improve prediction accuracy and robust-
ness. They can be utilized in wind turbine health monitoring to boost
fault classification, anomaly detection, and RUL prediction. Ensemble
methods, such as bagging and boosting, aggregate predictions from mul-
tiple models or train multiple models with different subsets of data to
achieve better overall performance [125].

• Transfer Learning: Transfer learning is a technique where knowledge
gained from one task or domain is applied to another related task or
domain. In wind turbine health monitoring, transfer learning can be
beneficial when labeled data is limited. Retrained models from simi-
lar applications or domains can be used as a starting point for training on
wind turbine data, allowing for faster convergence and improved perfor-
mance [126–128].

Health monitoring considering ancillary service provision:

Health monitoring is crucial for detecting anomalies during wind turbine pro-
vision of ancillary services, ensuring reliable operation. Detecting anomalies
at an early stage can prevent severe damage and minimize downtime, reducing
repair costs and maintaining continuous service provision [129]. Anomalies in
wind turbine operation can impact performance when providing ancillary ser-
vices. Healthmonitoring systems analyze real-time data to assess power output,
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pitch angle, rotor speed, and vibrations, promptly addressing deviations. These
services are vital for grid stability and reliability [130].

However, when wind turbines provide ancillary services, several challenges
are associated with wind turbine health monitoring. Ancillary services may in-
volve deviations from normal turbine operation, making fault detection more
challenging. Differentiating between normal variations related to ancillary ser-
vice provision and actual faults requires practically efficient algorithms that can
accurately distinguish between the two. This requires careful consideration of
the operational characteristics and behavior of the turbine during ancillary ser-
vice provision. Moreover, developing accurate and robust machine learning
models for wind turbine health monitoring typically requires labeled training
data.

However, obtaining labeled data for rare or specific fault scenarios during
ancillary service provision can be challenging. Limited availability of labeled
data can impact the performance and accuracy of the health monitoring system,
requiring alternative approaches such as transfer learning or physics-informed
deep learning modeling techniques. More importantly, wind turbines are com-
plex systems with intricate interactions between various components and sub-
systems. The dynamic nature of these systems, coupled with changing wind
conditions during ancillary service provision, makes it challenging to develop
accurate models and algorithms for health monitoring. Capturing the depen-
dencies and dynamics of the system accurately requires evolved modeling tech-
niques and algorithms that can handle nonlinearities and time-varying condi-
tions.

Addressing these challenges requires a combination of domain knowledge,
improved data analytic techniques, and a multidisciplinary approach. Develop-
ing robust health monitoring systems that can effectively monitor wind turbines
while providing ancillary services requires continuous research and innovation
to overcome these challenges and ensure the reliable and efficient operation of
wind turbine systems.
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1.5 Objectives, challenges and contributions
The previous sections provide an introduction to the field of wind energy con-
version systems: their operation and how they contribute to ancillary services
with frequency containment reserve. We discussed the intricacies they face, de-
manding adaptive operational strategies, especially when integrating into elec-
trical power systems. Data-driven methodologies can help in the modeling,
control, and health monitoring to ultimately further optimize the operation of
wind energy conversion systems that deliver FCR. The main objective of this
dissertation is to find such strategies both on a wind farm supervisory control
level as locally in a wind turbine control system and a wind turbine health mon-
itoring system. In this dissertation, we use FAST and FLORIS simulators, cfr.
Section 1.1.3, to assess the performance of the presented methodologies. The
specific objectives, challenges, and thesis contributions for each area are out-
lined below:

1.5.1 Wind farm supervisory control
Objective: The fundamental goal of the proposed wind farm supervisory con-
trol is to maximize wind farms’ overall performance efficiency and economic
benefits in both reserve and energy markets. This is achieved through the opti-
mal allocation of Frequency Containment Reserve (FCR) among wind turbines
utilizing active wake control, taking into account the inherent uncertainties re-
lated to intermittent wind power, wind direction changes, and grid frequency
fluctuations.
Challenges:

1. Optimal scheduling: Wind farms must provide day-ahead energy and
reserve commitments schedules, cfr.1.2.3. Accurate forecasting of wind
power output is critical to avoid imbalances between scheduled and actual
generation. This can lead to financial damages or nonoptimal contribu-
tions to the energy market. Moreover, wind farms face risks confronting
specific energy and reserve schedules due to the uncertainty associated
with wind power generation. Deviations from the scheduled output can
lead to financial losses or market penalties.

2. Uncertainties in intermittent wind power and grid frequency: Wind
power generation is inherently stochastic and intermittent, making it
challenging to predict the precise amount of energy a wind farm can
produce at any given time. Developing control strategies that can adapt
to these fluctuations is essential, as mentioned in Section 1.2.5, for
effective integration into the power grid. Furthermore, in FCR provision
wind farms need to actively respond to the grid’s frequency changes
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and ensure a stable and reliable power supply. Developing control
algorithms that can achieve grid compatibility under varying frequency
conditions is necessary.

3. Complex aerodynamics of wake formation: The interaction between
wind turbines within a wind farm results in wake formation, reducing
the downstream turbines’ efficiency, cfr. 1.1.3. Developing optimal
control mechanisms and adaptive operational strategies is required
to manage wake effects and maximize power generation. Moreover,
changes in wind direction and reserve provision alter wind farms’ wake
behavior and impact the performance of wind turbines, affecting the
distribution of wake and the overall power output of the wind farm.
Addressing the optimal distribution of power reserve considering wind
direction variability and uncertainties associated with wind and grid
frequency is essential for optimizing energy production and facilitating
grid integration.

Contribution:
Chapter 2 of the thesis presents significant contributions. It introduces a

new wind farm operational strategy optimizing FCR provision while managing
aerodynamicwake formation and addressing challenges related to varyingwind
speed/direction, grid frequency uncertainties, and energy/reserve scheduling.
This work uses a two-stage stochastic programming approach to realize these
goals, as shown in Fig. 1.6.

1.5.2 Wind turbine local control
Objective: The wind farm supervisory level from Section 1.5.1 delivers
setpoints to the local wind turbines. The main objective here is to create
and deploy sophisticated algorithms that ensure robust, optimal performance
and safe operation for individual wind turbines. These algorithms enable the
turbines to dynamically provide FCR across all operational regions, including
partial and full load regions, considering transition zones. These algorithms
need to be adaptable and capable of handling the challenges posed by varying
turbulent wind conditions.

Challenges:
1. Nonlinearities in wind turbine dynamics: Wind turbines exhibit nonlin-

ear behavior influenced by various factors such as aerodynamic char-
acteristics, fluctuating wind speeds, and mechanical components, cfr.
1.1.3. As a result, developing control strategies that can anticipate and
account for these nonlinearities becomes indispensable for ensuring sta-
ble and efficient turbine operation while considering physical constraints
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and restrictions. These strategies must possess the ability to predict and
incorporate the complex interactions within the system and its control
sequences to identify optimal control actions that enhance the overall
performance of the turbines.

2. Grid frequency changes and stochastic wind speed variations: Wind
turbines need to react to control setpoints decided at the wind farm su-
pervisory control level and face regulating operation and proportionally
responding to grid frequency fluctuations, cfr. 1.5. This necessitates an
adaptive control design that adequately copes with determined power re-
serves, which must be adjusted according to the wind turbine’s operating
condition. Designing control algorithms capable of effectively adapting
to these stochastic variations while ensuring safe, robust, and optimal
performance poses significant challenges that demand attention and res-
olution.

Contribution:
Chapter 3 introduces a robust data-driven MPC approach for wind tur-

bine control, enhancing power reference tracking. This work starts from the
schematic shown in Fig. 1.9, employing optimal cooperation between pitch and
torque control systems, considering FCR provision in turbulent and high-speed
wind conditions, where wind turbines will be exposed to adverse mechanical
loadings, leading to minimization of mechanical loads posed on the blade pitch
mechanism.

Chapter 4 proposes an adaptive strategy that can effectively contribute to
all operating conditions, improving FCR provision through generator torque
control addressing grid frequency changes and wind variations. The proposed
method also suggests an adaptive reserve deployment even in the below-rated
wind speed, instead of having a fixed reserve proposed in chapter 3, which
results in wind turbine efficiency and stability improvement.

1.5.3 Wind turbine health monitoring
Objective: The primary objective of wind turbine health monitoring is to
acquire methods and procedures that precisely assess the condition of wind
turbines, particularly in the context of grid integration. To strengthen the
monitoring and detection of anomalies in wind turbine operation, data-driven
methodologies are developed. We particularly look into comparing turbine
sensor data with surrogate models. This is to ensure optimal performance and
minimize downtime.

Challenges: Section 1.4.4 has already covered the challenges associated
with monitoring the health of wind turbines. This thesis will now focus on
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addressing the primary challenges as follows:

1. Overall health monitoring: Overcoming the limitations of traditional
methods by developing integrated and multi-dimensional health moni-
toring approaches to assess the wind turbine’s overall performance and
health, considering complex interactions and dependencies among sub-
systems.

2. Efficient model fusion: Facilitating wind turbine health monitoring by
exploring efficient model fusion between physics-based techniques and
data-driven approaches to manage multiple models, ensuring a cooper-
ative and coherent view of the turbine’s condition despite diverse data
sources and sensor measurements.

3. Curtailment-induced degradation: Addressing the critical gap in wind
turbine health monitoring research related to degradation scenarios
caused by curtailment operations. Developing methodologies to detect
and quantify the effects of curtailment-induced degradation on wind
turbine health, ensuring effective maintenance decisions and optimal
operation.

Contribution:
Chapter 5 presents a hybrid physics-based deep learning framework to

predict wind turbines’ overall performance. This framework predicts electrical
power and rotational speed while considering the stochastic nature of wind
speed and intricate correlations between pitch-generator torque control se-
quences and system responses in turbulent wind conditions. Additionally, the
chapter explores a self-learning iterative framework that improves classifier
performance by dynamically updating newly labeled anomalies based on
past successful classifications. The study considers various anomalies and
degradation scenarios to effectively address the complexities present in wind
turbine performance under varying grid requirements and operating conditions.

By addressing the above-mentioned challenges, this thesis aims to enhance
wind energy conversion systems’ performance, reliability, and grid integration.
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1.6 Thesis outline

The following chapters of the thesis contain the research results of this PhD.
Combined, these results answer the objectives defined above. Figure 1.13 il-
lustrates the coupling of the different chapters in this thesis. Chapter 2 starts
with the optimal FCR allocation on the wind farm level. These provide set-
points to the wind turbine local controller for full load region (Chapter 3) and
partial/full load (Chapter 4). In Chapter 5, wind turbine health monitoring is
considered to strengthen the operations. The methodologies developed in these
chapters are data-driven to be adaptive without losing track of the physical be-
havior of wind farms and turbines. In each chapter, we analyze the performance
of the methodologies on simulation data.

Chapter 2: Wind Farm Supervisory Control Level: Optimal Allocation of
FCR Considering Wake Effect

The chapter presents a novel operation strategy for wind farms (WFs), aiming
to optimize the provision of FCR while simultaneously controlling wake for-
mation. The power reserve allocation is dynamically determined at the wind
farm supervisory control level, taking into account factors such as intermit-
tent wind power, wind direction, grid frequency variability, and the complex
aerodynamics of wake formation. A two-stage stochastic programming ap-
proach is employed to support decision-making for optimal contributions to
day-ahead energy/FCR markets, considering sub-hourly wind power and grid
frequency uncertainties. To reduce computational complexity, a data-driven
surrogate model of wake formation is integrated into the optimizer. This sur-
rogate model utilizes a neural network trained on the Gauss-Curl-Hybrid wake
model in FLORIS, enabling rapid estimation of wake control parameters such
as optimal yaw angles and axial induction factors. A coevolutionary-based
multi-objective particle swarm optimization technique is utilized to search for
the optimal deloading of wind turbines, maximizing total power production and
kinetic energy while minimizing wake. The proposed algorithm’s performance
is evaluated using the C-Power wind farm in the North Sea as a case study.
Simulation results demonstrate the effectiveness of the proposed algorithm in
improving the overall performance of the wind farm under different operational
conditions, showcasing its potential for improving FCR provision and optimiz-
ing wake control.
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Chapter 3: Wind Turbine Local Control Level: Predictive and Optimal
Activation of FCR

The chapter focuses on applying neural network-based Model Predictive
Control (MPC) to enhance the performance of wind turbine (WT) control
systems in providing frequency control ancillary services to the grid. A
closed-loop Hammerstein structure is utilized to approximate the behavior of
a 5MW floating offshore wind turbine with a Permanent Magnet Synchronous
Generator (PMSG). Multilayer perceptron neural networks are employed to
estimate the aerodynamic behavior of the nonlinear steady-state part, while the
linear AutoRegressive with Exogenous input (ARX) model is used to identify
the linear time-invariant dynamic part. The Cascade Hammerstein design
is used to simplify online linearization at each operating point, avoiding the
need for nonlinear optimization. The proposed algorithm utilizes quadratic
programming to obtain control actions, eliminating the necessity for nonlinear
optimization. The designed control system provides a fast and stable response
to grid frequency variations with optimal pitch and torque cooperation. The
performance of the MPC is compared with the gain-scheduled proportional-
integral (PI) controller. Results demonstrate the effectiveness of the designed
control system in providing FCR and frequency regulation in the future of
power systems.

Chapter 4: Wind Turbine Local Control Level: Adaptive Activation of
FCR

This chapter presents an adaptive operational strategy at wind turbines (WTs)
local control level to provide FCR while considering the unpredictable
behavior of grid frequency and wind speed. The strategy involves estimating
an adaptive reserve margin based on short-term grid frequency predictions
and using a real-time look-up table to adjust the reserve margin and control
setpoints in an FCR supplementary control loop. The study evaluates the
strategy’s performance for fixed and percentage power reserve methods and
applies gain scheduled fuzzy-PI control for reliable FCR provision in turbulent
winds. The proposed strategy demonstrates optimal response to grid frequency
changes and effectively smoothens out power fluctuations while improving
generator speed regulation. The fuzzy-PI control approach performs well in all
operating regions and reserve modes, providing stable control in the presence
of turbulent wind speeds. The study concludes that the proposed operational
strategy is cost-effective, adaptable to various operating conditions, and can be
integrated into existing pitch and torque control systems of WTs for optimal
FCR provision.



i
i

i
i

i
i

i
i

46 Introduction

Chapter 5: Wind Turbine Health Monitoring: Anomaly/Degradation De-
tection Considering Curtailment

This chapter addresses the challenge of assessing the overall condition of wind
turbines (WT) in operation, particularly when they provide ancillary services
and operate under curtailment mode. A novel physics-informed learning frame-
work is proposed to accurately approximate the time-varying correlation be-
tween control sequences and system response, capturing the aerodynamic non-
linearity of the NREL 5MW offshore WT. A computationally efficient weakly
supervised approach is introduced to detect degradations and anomalies con-
sidering curtailment, using a hybrid structure and support vector machine for
classification in both the time and frequency domain. An iterative learning
framework is implemented to update the selected classifier dynamically, en-
abling it to learn from new anomalies during active operations. The proposed
method accounts for uncertainties in the system, such as wind stochasticity and
power curve variations, as well as different sparsity levels in the datasets. The
results of the proposed approach demonstrate its potential in enhancing health
monitoring performance, leading to more efficient and accurate assessments of
the overall condition of wind turbines.

Chapter 6: Conclusion and Future Work

The concluding chapter summarizes the research outcomes presented in the the-
sis and provides a cohesive overview of the contributions made in each chapter.
It highlights the key findings, addresses the research objectives, and discusses
the potential future research directions and challenges.
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Figure 1.13: Overview of the chapters in this dissertation.
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Chapter 2

Wind Farm Supervisory
Control:
Optimal FCR Allocation
Considering Wake Effect

This chapter addresses the challenges discussed in Secion 1.5.1 by presenting
an innovative operational strategy for wind farms. The primary focus of this
strategy is twofold: first, optimizing the provision of Frequency Containment
Reserve (FCR), and second, effectively managing wake formation. The pro-
posed approach involves determining the reserve and deloading percentage 𝛽%
for individual wind turbines based on pre-defined optimal wake-controlled pa-
rameters. Additionally, set points for deloaded power and rotational speed are
established for each wind turbine within the wind farm layout to achieve these
objectives.

The power reserve allocation is dynamically determined at the supervisory
control level, considering various factors such as intermittent wind power, wind
direction, grid frequency variability, and the intricate aerodynamics involved in
wake formation. To support decision-making for optimal contributions to day-
ahead energy/FCR markets, a two-stage stochastic programming approach, cfr.
Figure 1.6, is employed, which accounts for uncertainties in sub-hourly wind
power and grid frequency.

To tackle computational complexity, the optimizer incorporates a data-
driven surrogate model of wake formation. This surrogate model utilizes a
neural network trained on the Gauss-Curl-Hybrid wake model in FLORIS,
allowing for rapid estimation of wake control parameters, including optimal
yaw angles and axial induction factors. By integrating this surrogate model,
the algorithm can efficiently optimize the control of wakes.
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To search for the optimal deloading of wind turbines, the proposed al-
gorithm employs a coevolutionary-based multi-objective particle swarm op-
timization technique. This technique maximizes total power production and
kinetic energy while minimizing the impact of the wake. By considering these
objectives simultaneously, the algorithm enhances the overall performance of
the wind farm.

The effectiveness of the proposed algorithm is evaluated through a case
study conducted on the C-Power wind farm in the North Sea. Simulation
results demonstrate that the algorithm significantly improves the wind farm’s
performance under different operational conditions. By highlighting the
supervisory control level’s role in optimizing the provision of FCR and
controlling wake formation, the study showcases the algorithm’s potential to
enhance wind farm efficiency and reliability.

The contents of this chapter are published in IEEE Transactions on Sustainable
Energy [1].
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Abstract This study proposes a novel operation strategy for wind farms’ opti-
mal frequency Containment Reserve (FCR) provision that simultaneously dis-
tributes FCR and optimally controls wake formation. The power reserve allo-
cation is dynamically decided at the wind farm supervisory control level, con-
sidering the intermittent wind power and direction, grid frequency stochastic-
ity, and the aerodynamic complexity of the wake. A two-stage stochastic pro-
gramming approach supports decision-making for an optimal contribution to
day-ahead energy/FCR markets considering sub-hourly wind power and grid
frequency uncertainty. Moreover, a novel method is used to reduce the compu-
tational complexity by employing a data-driven surrogate model of wake for-
mation in the optimizer. This surrogate model consists of a neural network
trained on the Gauss-Curl-Hybrid wake model in FLORIS. This deep learn-
ing approach allows fast estimation of the wake control parameters, i.e., the
optimal yaw angles and axial induction factors. Then, a coevolutionary-based
multi-objective particle swarm optimization searches for the optimal deloading
of the WTs and maximizes the total power production and kinetic energy while
minimizing wake. The performance of the proposed algorithm is evaluated on
the C-Power wind farm in the North Sea. Simulation results demonstrate its
effectiveness in improving the wind farm’s overall performance for different
operational conditions.

2.1 Introduction
The European Union (EU) is dedicated to becoming the global leader in decar-
bonizing the power system. Wind power is essential in reaching the EU carbon-
neutral target by 2050 [2]. However, effective integration of wind energy into
the power system can raise concerns about grid stability and reliability due to
the intrinsic stochastic nature of wind [3]. The primary reason for the blackout
events on 9 August 2019 in the UKwas the sudden decline in frequency beyond
the regulation capability of system inertia [4]. As a result, there is a significant
demand from Transmission System Operators (TSO) for wind energy sources
to play an active role in balancing the grid through market participation and
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provision of ancillary services such as frequency control, which traditionally
have been provided by conventional power plants. [5]. Nevertheless, how to
effectively incorporate the ability to provide frequency support into the reliable
and optimal operation of the system, accurately schedule the products of the fre-
quency support, and efficiently distribute the power reserve within wind farms
(WF) are still open challenges. This study aims to fill these gaps by proposing
an optimal operation strategy considering all mentioned criteria.

Ancillary markets and other grid-balancing mechanisms have already been
created for renewable energy sources in European countries. The participa-
tion of wind energy in reserve markets in Great Britain and Spain is analyzed
in [6], and recommendations are made to support future development. [7] also
explored the potential of wind power to enter the Swedish ancillary servicemar-
kets, considering technical requirements and the potential financial impacts on
a WF. The Belgian TSO has reported that offshore wind is expected to play a
significant role in the Belgian power system in the near future [8]. Although
wind energy has the capability to enter these markets, still some uncertainty re-
garding optimal contribution exists. A differentiated pricing scheme was used
in [9] to propose a market mechanism design for inertia and primary frequency
response, taking into account the energy market in which the system operator
will participate in the joint market with a combined clearing process. While the
methods described in [9,10] have not considered the day-ahead scheduling, [10]
leverages field-measured data to examine the frequency support capacity of a
WF, and discusses the uncertainty of wind and frequency constraints. [11–13]
discussed optimal bidding and scheduling strategies that optimize hour-ahead,
intraday, and day-ahead operations while incorporating a shared frequency reg-
ulation reserve plan for wind, photovoltaic, and thermal power. However, these
studies did not take into account the real-time dynamic interactions inside or
between these energy sources. An advanced day-ahead bidding strategy for
wind power producers is proposed in [14], considering the wind speed and sys-
tem frequency uncertainties as stochastic inputs and a confidence level on the
real-time reserve provision. In [15], optimal bidding strategies in the real-time
electricity market are investigated for wind power generation using a bi-level
stochastic optimization framework that maximizes profit by determining the
optimal bidding quantity. However, the optimal distribution of the scheduled
reserve amongWind Turbines (WT), taking into account the aerodynamic com-
plexity of these sources, has not been considered by [14, 15].

Another critical element needed to facilitate wind integration into power
systems is an advanced WF supervisory operation strategy that guarantees the
optimal provision, allocation, and activation of power reserve in different op-
erating conditions [16]. In a two-stage economic dispatch model, [17] and [18]
incorporate wind power reserve but yet overlook the optimal reserve allocation
in WFs. More recent studies suggested novel WF control strategies and ap-
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proaches for enhancing the grid support, such as self-control via diode rectifier-
based high voltage alternating current (HVAC) transmission system [19], error-
based active disturbance rejection control for WT power regulation [20], de-
loading and curtailment methods [21, 22] that maintain an adequate power re-
serve for delivering an automatic and fast response to the TSO’s demands. [23]
introduced a scheme for model predictive control that harmonizes the function-
ing of offshoreWTs and offshore DC collection grid capacitors to offer rapid in-
ertia and primary frequency support. Nevertheless, the need for power reserve
and frequency support amplifies the intricacies of WFs with linked aerody-
namic systems, necessitating a more comprehensive examination. Studies have
been carried out focusing on the aerodynamic coupling between WTs and their
wake formation, which creates a wind energy deficit between the wind-leaving
turbine (upstream WT) and the wind-arriving turbine (downstream WT). This
phenomenonmakes it difficult to determine exact energy extractions and justify
the WFs’ optimal contribution to frequency regulations [24].

Further studies have focused on determining the effectiveness of including
inertial response and frequency control techniques, considering the apparent
limitations of WFs compared to traditional power plants [25–27]. Applying
these techniques often reduces wind energy production by a certain level of
efficiency loss. [28] addressed harvesting maximum kinetic energy during the
deloading control strategy using a game theory-based optimal control frame-
work, which distributedly adjustsWTs’ rotor speeds in aWF layout. Additional
studies propose coordinated control approaches for WFs providing frequency
control considering wake interactions inside theWF. In [29], a coordinatedWF
operation strategy is proposed that, instead of seeking to maximize the power
generation of WTs individually, ensures the maximization of the rotational ki-
netic energy while maintaining the optimal WF’s overall performance. A con-
trol algorithm is suggested in [30] to distribute the power reserve, aiming to
minimize the wake effects and maximize the reserve capacity.

The mentioned studies either covered optimal bidding problems in the mar-
ket or investigated WF optimal operation strategies without considering wake
effects or market constraints. Although some research reveals optimization
methods that can coordinateWTs and enable them to provide ancillary services
optimally, time-efficient optimization approaches are lacking, considering the
high complexities involved in wakemodels. In addition, the stochastic behavior
of wind and grid frequency forms a perpetually varying environment, requiring
online and dynamic strategies that can cope with high aerodynamic complex-
ity and variability. This study aims to overcome the limitations of current ap-
proaches by developing an integrated algorithm that can effectively tackle the
primary challenges associated withWF providing FCR, particularly when there
are no ideal energy storage systems in place. The proposed algorithm will take
an active approach to ensure that FCR provision is optimized at scheduling and
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activation levels. In [29, 31] and [32], the FCR provision was optimally dis-
tributed in a WF, taking into account wake interaction, using the Jensen wake
model. However, the wake or wake-controlled parameters were not actively
controlled as part of the optimization. The primary novelty of this article is to
integrate active control of the wakes in the operation strategy, such that FCR
distribution and wake control are optimized simultaneously. However, the in-
tegration of active wake control significantly increases the complexity of the
optimization problem compared to [29], and [32]. This is resolved by the sec-
ondary novelty of this work, i.e., using a data-driven surrogate model of the
wake formation in the optimizer, resulting in a computationally efficient opti-
mal operation strategy. Moreover, the Gauss-Curl-Hybrid (GCH) wake model
in the FLORIS wake simulator is used to generate the dataset instead of the
simplified Jensen wake model. The contributions of this paper are three-fold:

1. A two-stage stochastic programming is proposed to optimize the contri-
bution of a WF to the day-ahead energy and FCR markets while consid-
ering uncertainties related to wind speed and grid frequency. The ap-
proach involves using the Group Method of Data Handling (GMDH), a
data-driven time-series prediction technique, to predict wind speed and
grid frequency and calculate expected values for different scenarios.

2. An optimization framework incorporating active wake control is then
suggested to dynamically distribute the pre-scheduled optimal power re-
serve among the WTs, restricted by optimal wake-controlled parameters
(yaw angles and axial induction factors), which are being calculated and
updated for varying operating conditions using a computationally effi-
cient approach involving deep learning neural networks.

3. The integrated algorithm of optimal power reserve allocation is realized
by proposing an adaptive WT local control system that can cope with
the set points decided at the supervisory control level to adjust the power
reserve margin based on the optimally estimated deloaded percentage.

The rest of this paper is organized as follows: § II propose the formulation of
the WF operation strategy. § III introduces the stochastic programming frame-
work for offering an optimal FCR provision based on wind and grid frequency
prediction. § IV formulates the optimal operation strategy and allocation of
power reserve by maximizing WF power production and total kinetic energy.
§ V provides an overview of the outcomes and results, while § VI summarises
and concludes the paper.
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2.2 Overview of the WF operation strategy

The proposed operational strategy is shown in Fig. 2.1. The presented concept
relies on a two-step sequential framework. In the primary step, a two-stage
stochastic programming problem estimates the WF’s optimal contribution to
the day-ahead energy and reservemarkets, consideringwind and grid frequency
uncertainties. In the first stage, the model determines the optimal decision vari-
ables 𝑃𝑠𝑐ℎ𝑒 and 𝑃𝑠𝑐ℎ𝑟 based on the available information at the time of decision-
making, such as the forecasted wind power output 𝑣 and the grid frequency 𝑓𝑒
employing the Group Method of Data Handling (GMDH), a data-driven time-
series prediction technique. The decision variables include the amount of en-
ergy and reserve and the bids submitted to the market. In the second stage,
the model takes into account the uncertainties associated with wind power gen-
eration and grid frequency, which can affect the actual outcomes of the first-
stage decisions. The model considers a set of scenarios that represent different
possible realizations of these uncertainties and evaluates the outcomes of the
first-stage decisions under each scenario. The evaluation criteria include the
expected profit, the risk of violating the reserve requirements, and the cost of
deviation from the scheduled energy and reserve productions. The final deci-
sion is then made by considering the trade-off between the expected profit and
the risk of violating the reserve requirements while ensuring the reliability of
the WF operation.

Among different reserve products, this study only focuses on frequency
Containment Reserve (FCR), formerly known as the primary control, which
helps maintain the stability of the power grid by providing a rapid response
to sudden changes in frequency. The FCR provision is responsible for keep-
ing the power system’s frequency within an acceptable range, Δ 𝑓 = 200 𝑚𝐻𝑧
around the nominal frequency of 𝑓𝑟𝑒 𝑓 = 50 𝐻𝑧, and reacting proportionally to
the frequency changes. Automatic and manual frequency Restoration Reserves
(aFRR, mFRR) are other ancillary services, formerly known as secondary and
tertiary control. Fig. 2.2 shows the provision and activation of these services.
The aFRR and mFRR are reserve capacities that play a crucial role in main-
taining the stability of the power grid by restoring the system’s frequency to its
nominal value in the event of a disturbance. While the aFRR is automatically
activated, themFRR requiresmanual activation. This study considers FCR pro-
vision, which can introduce considerable challenges onWFs integrated control
systems.

Once an ideal reserve 𝑃𝑠𝑐ℎ𝑟 has been determined in the day-ahead market,
the subsequent stage involves the utilization of a second-layer optimization al-
gorithm to actively allocate the scheduled power reserve among the WTs. This
process involves the efficient computation of optimal wake-controlled parame-
ters, such as optimal yaw angles 𝑦𝑜𝑝𝑡𝑖 and axial induction factors 𝑎𝑜𝑝𝑡𝑖 , through
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SYSTEM FREQUENCY

AREA BALANCE

(total injection=total offtake)

FCR

aFRR

mFRR

FCR activation

200 mHZ

-200 mHZ

10 mHZ

-10 mHZ

area Control Error (ACE)

ACE

restore frequency

relieve reserves

relieve
reserves

containment frequency deviation

frequency
Frequency

- Bid activation within
maximum 30 sec.
- Provision for 15-30 min
for 200 mHz deviation
- Linear power-frequency
(proportional) respond

- Bid activation within
maximum 7.5 minutes.
- Controled by load
frequency control signals.

- Bid activation after 15 mins.
- Manual activation if a severe
outage occurs.

Figure 2.2: Provision of ancillary services.
the use of an Adaptive Network-based Fuzzy Inference System (ANFIS) frame-
work. The ANFIS structure is capable of learning and replicating the wake
behavior of the WF in various wind speeds, directions, and turbulence inten-
sities (TI). The allocation of power reserve will be realized by sending WTs’
setpoints, i.e., deloaded rotational speed 𝜔𝑑𝑙𝑖 , and blade pitch offset 𝜃offset

𝑖 , and
deloaded power 𝑃𝑑𝑙𝑤,𝑖 , to the WTs’ local control systems. After optimally de-
ciding the WT’s adjustable power reserve margin, the WT’s look-up table will
be adapted considering the estimated deloading percentage 𝛽. Eventually, acti-
vating FCR will be carried out by responding to frequency changes Δ 𝑓 through
an FCR supplementary control loop.

2.3 Optimal FCR contribution

As mentioned, the proposed stochastic optimization framework aims to deter-
mine the strategic bidding for the scheduled reserve quantity in the day-ahead
market at the market-clearing price and in a non-price-making position. Once
the WF operator decides the bidding quantity, it will not be allowed to change
its decision the next day against the signed corresponding transaction agree-
ment. Therefore, a two-stage stochastic optimization process is formulated to
support the decision-maker during the different stages considering the market
restrictions. This strategy helps the operator make an optimal decision consid-
ering the day-ahead electricity and reserve transactions (first stage) and aids in
optimizing tomorrow’s real-time operations (second stage).

The GMDH method, which is a form of nonlinear regression, acts as a
semi-supervised deep learning technique that can self-organize the predictive
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distribution of stochastic variables. By driving the optimal polynomial net-
work structure, it can accurately reveal the approximated function and predict
future values based on historical datasets. The GMDH time series prediction
approach involves utilizing polynomial functions to express the general rela-
tionship between delayed inputs and output variables, known as the Volterra
function series or the Kolmogorov-Gabor polynomial function expressed by:

𝑦 = 𝑎0 +
𝑚∑
𝑖=1

𝑎𝑖𝑥𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=1
𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 +

𝑚∑
𝑖=1

𝑚∑
𝑖=1

𝑚∑
𝑘=1

𝑎𝑖 𝑗𝑘𝑥𝑖𝑥 𝑗𝑥𝑘 (2.1)

In the given equation, the response variable is represented by ’y’, while the
vector of lagged time series to be regressed is represented by ’x’. The letter
’m’ denotes the number of variables, and the weighting factors are represented
by the coefficients 𝑎0, 𝑎𝑖 , 𝑎𝑖 𝑗 and 𝑎𝑖 𝑗𝑘 . For this research, the quadratic K-G
polynomial has been utilized and represented in the following form:

𝑧 = 𝑓 (𝑥𝑖 , 𝑥 𝑗) = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥 𝑗 + 𝑏3𝑥 𝑗𝑥𝑖 + 𝑏4𝑥
2
𝑖 + 𝑏5𝑥

2
𝑗 (2.2)

The GMDH framework can be trained to learn the relationship between dif-
ferent lags using a function 𝑓 . To accomplish this, a stochastic approximation
algorithm is proposed, which is based on a multilayer network. Each layer of
the network uses various component subsets of the polynomial function, with
the output of the last layer being used as input for the next layer. The algorithm
conducts regression polynomials of all possible combinations of two indepen-
dent variables from a total of 𝑛 inputs in the first layer. The minimum activation
function is a second-order polynomial, but higher orders can be used to find the
optimal complexity. A threshold is used to limit the number of solutions and
to find the best structure based on an external criterion.

The grid frequency estimation is performed using the least-squares regres-
sion method over a period of five years of historical data from January 2015
to October 2019 with a 10-seconds time interval obtained from the website of
the Belgian TSO Elia [33]. The wind speed dataset for the same period with a
15-minute sampling interval is obtained from a global weather API [34]. The
prediction horizon is set to 24 hours with five delayed inputs. Fig. 2.3 illustrates
the stochastic input parameters of the proposed problem. The quarter-hourly-
based average grid frequency is estimated using the K-means algorithm that
finds the average center of clusters located outside of the deadband zone. Also,
around 400 wind speed scenarios are considered based on the historical data
set. A scenario reduction suggested in [35] is used to reduce the computational
complexity of the problem. The nonlinearity of the available WF power pro-
duction considering wind speed, direct and turbulence intensity is estimated as
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follows:

𝑃wf =


0 MW , 0 < v < vci

w

𝑎 𝑣3 + 𝑏 𝑣2 + 𝑐 𝑣 + 𝑑 MW , vci
w ⩽ v ⩽ vn

w

149.73 MW , vn
w ⩽ v ⩽ vcu

w

(2.3)

where 𝑣ci
w, 𝑣cu

w and 𝑣n
w are respectively the cut-in, cut-out and nominal wind

speeds in m/s. 𝑃wf is the WF total electrical power in MW. 𝑎, 𝑏, 𝑐, and 𝑑
are the parameters of a cubic polynomial fitted to the data. A deep learning
time-series forecasting method is conducted using the GMDH to compute each
scenario’s expected value [36].
The bidding decision variables of electricity production 𝑃sch

𝑒 and reserve 𝑃sch
𝑟

are first-stage decision variables that should be scheduled a day before the ac-
tivation. Once the WF owner decides on the FCR contribution, it will not be
allowed to change its decision the next day. Therefore, the second stage should
consider the possible scenarios and their expected values. The optimization
framework and the constraints are:

max

(
𝑃sch
𝑒 · 𝜆sch𝑒 + 𝑃sch

𝑟 · 𝜆sch𝑟
)
· Δ𝑇+

E𝑠
(
(Δ𝑃𝑒 (𝑠) · 𝜆Δ𝑒 + Δ𝑃𝑟 (𝑠) · 𝜆Δ𝑟 ) · Δ𝑇

) (2.4)

𝑃wf = 𝑃𝑟 (𝑠) + 𝑃𝑒 (𝑠) (2.5)

Δ𝑃𝑒 =
��𝑃𝑒 (𝑠) − 𝑃sch

𝑒

�� , Δ𝑃𝑟 =
��𝑃𝑟 (𝑠) − 𝑃sch

𝑟

�� (2.6)

Δ𝑃𝑒 (𝑠) · 𝜆Δ𝑒 = Δ𝑃+𝑒 (𝑠) · 𝜆+Δ𝑒 + Δ𝑃−𝑒 (𝑠) · 𝜆−Δ𝑒 (2.7)

Δ𝑃𝑟 (𝑠) · 𝜆Δ𝑟 = Δ𝑃+𝑟 (𝑠) · 𝜆+Δ𝑟 + Δ𝑃−𝑟 (𝑠) · 𝜆−Δ𝑟 (2.8)

𝑃sch
𝑟 = 200mHz · 𝐾 (𝐾 is droop constant) (2.9)

𝑃𝑟 (𝑠) = Δ 𝑓 · 𝐾 , Δ 𝑓 = 𝑓𝑒 − 𝑓ref ( 𝑓ref is 50 Hz) (2.10)

where 𝑃𝑟 (𝑠) and 𝑃𝑒 (𝑠) are stochastic parameters, 𝜆sch
𝑒 and 𝜆sch

𝑟 are the electric-
ity and reserve prices respectively. E𝑆 is the probability of scenario 𝑠. Δ𝑃𝑒+(𝑠),
Δ𝑃𝑒− (𝑠), Δ𝑃𝑟+(𝑠) and Δ𝑃𝑒+(𝑠) are additional and deficiency of power injec-
tion to the grid and reserve provision. 𝜆−Δ𝑒, 𝜆

+
Δ𝑒, 𝜆

−
Δ𝑟 and 𝜆+Δ𝑟 are revenue and

penalty for additional power and reserve injected to the grid as well. The op-
timization will be carried out for 24 hours, considering market parameters on
a quarter-hourly basis. Δ𝑇 is the time interval for electricity injection and fre-
quency regulation, i.e., 15 minutes. The TSO has different mechanisms to pe-
nalize providers if they violate their scheduled reserve contributions based on
the contracted agreement. The imbalance in energy settlement takes place in
real-time on a quarter-hourly basis. Consequently, the energy provider gets a
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Figure 2.3: Stochastic parameters based on historical datasets.

reduced revenue and penalty for its positive and negative deviation at each set-
tlement course when the generated power is higher than the scheduled power
as follows:

𝜆+Δ𝑒 = 𝜆
sch
𝑒 − 𝛼 ; 𝜆−Δ𝑒 = 𝜆

sch
𝑒 + 𝛼 (2.11)

𝜆−Δ𝑟 = 0.2 · Θ · 𝜆M
𝑟 ; 𝜆+Δ𝑟 = 0 (2.12)

Θ =
𝑃sch
𝑟 − 𝑃𝑟
𝑃sch
𝑟

(2.13)

where 𝛼 is an additional incentive component, which depends on the average of
the absolute values of the System Imbalance (SI) of the current and the previous
imbalance settlement period [37]. Θ is the failure factor, which increases by
the difference between the scheduled FCR and the activated one, i.e., 𝑃𝑟 . 𝜆M

𝑟

is the total remuneration for the FCR awarded for month M [38]. The objective
function (2.4) is subject to the following boundary conditions:
First stage:

0 ⩽ 𝑃sch
𝑒 ⩽ 𝑃

max
wf ; 0 ⩽ 𝑃sch

𝑟 ⩽
𝑃sch
𝑒

2
(2.14)
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𝑃sch
𝑒 + 𝑃sch

𝑟 ⩽ 𝑃
max
wf (2.15)

Second stage:

0 ⩽ 𝑃𝑒 (𝑠) ⩽ 𝑃av
wf ; 0 ⩽ 𝑃𝑟 (𝑠) ⩽

𝑃r(𝑠)
2

(2.16)

Δ𝑃+𝑒 (𝑠) = 𝑃𝑒 (𝑠) − 𝑃sch
𝑒 if 𝑃𝑒 (𝑠) > 𝑃sch

𝑒 (2.17)

Δ𝑃+𝑟 (𝑠) = 𝑃𝑟 (𝑠) − 𝑃sch
𝑟 · Δ 𝑓 if 𝑃𝑟 (𝑠) > 𝑃sch

𝑟 (2.18)

Δ𝑃−𝑒 (𝑠) = 𝑃𝑒 (𝑠) − 𝑃sch
𝑒 if 𝑃𝑒 (𝑠) ⩽ 𝑃sch

𝑒 (2.19)

Δ𝑃−𝑟 (𝑠) = 𝑃𝑟 (𝑠) − 𝑃sch
𝑟 · Δ 𝑓 if 𝑃𝑟 (𝑠) ⩽ 𝑃sch

𝑟 (2.20)

where the piece-wise linearization of the 𝑃wf given in (2.3) is used to find the
optimal solutions. The constraints (2.14) and (2.15) limit the scheduled elec-
tricity and reserve contribution to theWF’smaximum capacity. The constraints
(2.16) restrict the electricity and reserve activation to the available WF out-
put power. The half capacities in (2.14) and (2.16) guarantee the upward and
downward regulations when the grid frequency drops or goes above 50 Hz,
considering the deadband zone. The constraints in (2.16) are the limitations for
electricity injection and reserve activation. The constraints (2.17) to (2.20) are
considered for penalizing the electricity extra injection/off-takes and over/under
reserve activations against the schedule.

2.4 Optimal operation strategy
2.4.1 Wind farm operation
When the total available power 𝑃av

wf is higher than the scheduled power reserve
𝑃sch
𝑟 , theWF is able to deliver FCR in response to the grid frequency variations.

The extra power that should be arranged among N WTs can be referred to as
the WF deloaded power:

𝑃dl
wf = 𝑃

av
wf − 𝑃

sch
𝑟 ; 𝑃av

wf =
𝑁∑
𝑖=1

𝑃𝑤,𝑖 (𝑣𝑖) (2.21)

and 𝑣𝑖 is the wind speed experienced by each turbine. The electrical power of
each WT and the rotor thrust can be expressed as:

𝑃𝑤,𝑖 =
1
2
𝜌𝑅2𝑣3

𝑖𝐶𝑝 (𝜆𝑖 , 𝜃𝑖) (2.22)

𝐹𝑤,𝑖 =
1
2
𝜌𝑅2𝑣2

𝑖𝐶𝑇 (𝜆𝑖 , 𝜃𝑖) (2.23)

where 𝜌 is the air density and 𝑅 is the blade length. 𝐶𝑃 (𝜆𝑖 , 𝜃𝑖) and 𝐶𝑇 (𝜆𝑖 , 𝜃𝑖)
are the power and thrust coefficients that vary with the individual tip speed ratio
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𝜆𝑖 = 𝑅𝜔𝑖/𝑣𝑖 and blade pitch angle 𝜃𝑖 . An empirical𝐶𝑝 (𝜆, 𝜃) equation can also
be found in literature [39], with an exponential form as follows:

𝐶𝑃 (𝜆, 𝜃) = 𝑐1

(
𝑐2

𝜆𝐽
− 𝑐3𝜃 − 𝑐4

)
𝑒
−𝑐5
𝜆𝐽 (2.24)

1
𝜆𝐽

=
1

𝜆 + 𝑐6
− 𝑐7

𝜃3 + 1
(2.25)

where coefficients 𝑐1, ..., 𝑐6 for MW sizeWTs are 0.22, 116, 0.4, 5, 12.5, 0.088,
and 0.035 respectively [40]. The thrust coefficient is modeled by a second-
order polynomial function obtained from a wide range of simulations carried
out using the NREL 5-MW offshore baseline WT:

𝐶𝑇 (𝜆, 𝜃) = 𝜀1 + 𝜀2𝜃 + 𝜀3𝜆 + 𝜀4𝜃
2 + 𝜀5𝜃𝜆 + 𝜀6𝜆

2 (2.26)

where 𝜀1, ..., 𝜀6 are -0.1854, 0.0308, 0.161, 0.0002, -0.0133, and -0.0054, re-
spectively. These results are derived for the robust fitness to the Least Absolute
Residuals (LAR) with 0.9985 R-square and 0.067 RMSE.

2.4.2 Estimating wake formation
The conventional WF control approach relies on the WTs operating in Max-
imum Power Point Tracking (MPPT) mode without considering wake mini-
mization strategies. However, in this study, two major optimal control ap-
proaches are considered, i.e., Axial Induction Control (AIC) and Wake Redi-
rection Control (WRC). The AIC strategy reduces the upstream WTs’ thrust
force and controls wake formation by adjusting their axial induction factor by
offsetting the blade pitch angle or tip speed ratio. The WRC strategy aims to
steer the wakes away from downstream WTs by operating the WTs with a yaw
misalignment [41]. To achieve axial induction-based control, the free-streamed
WTs need to be operated outside their aerodynamic maximum by increasing
the blade pitch angle or reducing the tip-speed ratio (operating at a subopti-
mal working point). This reduces the WT power 𝑃𝑤 and the magnitude of the
rotor’s thrust force, which depends on the thrust coefficient. The power coeffi-
cient 𝐶𝑃 and thrust coefficient 𝐶𝑇 of the 5-MW offshore turbine as a function
of the pitch angle and tip speed ratio are shown in Fig. 2.4. The power and
thrust coefficients can also be expressed as functions of axial induction factor
𝑎𝑖 and nacelle yaw angle 𝑦𝑖 (yaw misalignment) as follows:

𝐶𝑃 = 4𝑎𝑖 (cos 𝑦𝑖 − 𝑎𝑖)2 (2.27)

𝐶𝑇 = 4𝑎𝑖
√

sin2𝑦𝑖 + (cos 𝑦𝑖 − 𝑎𝑖)2 (2.28)
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Figure 2.4: 5-MW WT Power and thrust coefficients.

Adaptive network-based fuzzy inference system (ANFIS)

Figure 2.5: The ANFIS structure, estimating optimal wake-
controlled parameters under AIC and WRC strategies.

The derivation of (2.27) and (2.28) involves using the axial momentum and the
Glauert theory, which are widely used in theoretical models for predicting WT
performance [42, 43]. The energy extraction by the turbine blades causes a re-
duction in the wind velocity at the turbine rotor disk. The average wind velocity
at the turbine can be calculated by the axial induction factor 𝑎𝑖 ∈ [0, 1/3]. The
maximum 𝐶𝑃 is determined by taking the derivative of the power coefficient
(2.27) with respect to 𝑎𝑖 and setting it equal to zero 𝜕𝐶𝑃

𝜕𝑎𝑖
= 0. In accordance

with the Betz limit, 𝐶𝑃,𝑚𝑎𝑥 = 16/27 is the maximum theoretically possible ro-
tor power coefficient [44]. Therefore, the maximum 𝐶𝑃 can be achieved when
𝑎𝑖 = 1/3 and zero degrees yaw misalignment 𝑦𝑖 . Accordingly, from (2.28), the
thrust coefficient for an ideal WT fully aligned with the wind, i.e., 𝑦𝑖 = 0, is
equal to 4𝑎𝑖 (1 − 𝑎𝑖). 𝐶𝑇 has a maximum of 1.0 when 𝑎 = 0.5 and the down-
stream velocity is zero. At maximum power output 𝑎 = 1/3, 𝐶𝑇 has a value of
8/9.

In order to identify optimal setpoints for WTs that provide FCR, it is cru-
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cial to rapidly report the WF’s optimal aerodynamic couplings and wake infor-
mation. To accomplish this, a deep learning approach has been proposed that
can model the WF’s flow fields and accurately approximate turbine wake infor-
mation. The Gauss-Curl-Hybrid wake model available in the FlOw Redirec-
tion and Induction in Steady State (FLORIS) simulation software is employed,
which combines the Gaussian wake model and the curl wake model to accu-
rately predict the wind speed deficit and turbulence intensity in the wake of a
WT. The model also considers the effects of ambient turbulence and the cou-
pling between𝐶𝑃 and𝐶𝑇 to maximize power production while minimizing the
wake effects with the following objective function:

max
𝑦𝑖 ,𝑎𝑖

𝑁∑
𝑖=1

𝑃𝑤,𝑖 (𝑎𝑖 , 𝑦𝑖 , 𝑣, 𝑊𝐷)

s.t. − 50.0◦ ≤ 𝑦𝑖 ≤ 50.0◦

0.0 ≤ 𝑎𝑖 ≤ 0.3333

(2.29)

Optimal yaw angles 𝑦opt
𝑖 and axial induction 𝑎opt

𝑖 factors are estimated under
AIC and WRC strategies in different wind conditions. Furthermore, extensive
simulations are carried out offline to train and test the ANFIS structure shown
in Fig.2.5. After training the ANFIS model with the obtained dataset, it can
accurately replicate and mimic the complex wake deficits of a W for a wide
range of conditions, including wind speeds, turbulence intensities, WDs, and
turbine performance parameters such as 𝐶𝑃 and 𝐶𝑇 . By using these inputs, the
model is capable of approximating the waked control operation and predict-
ing the optimal values of 𝑣𝑖 , 𝑦opt

𝑖 , and 𝑎opt
𝑖 for individual turbines within the

W. Using the ANFIS model to estimate wake-controlled parameters allows for
the rapid optimization of W performance by finding the optimal setpoints for
individual turbines to contribute to frequency control reserves. Although the
contracted scheduled reserve cannot be changed and must be respected hourly,
the optimal allocation of power reserve can be actively updated when the wind
field and wake formation vary.

2.4.3 Deloading strategy
WFs can provide power reserve and frequency control response (FCR) above
nominal wind speeds. However, at wind speeds below the rated value, it may
be necessary to deload some WTs to meet the promised FCR provision in case
the grid frequency drops and extra power needs to be injected into the grid.
Fig.2.6 shows that the deloaded operation of a WT can be achieved by shifting
the operating point to the left or right of the maximum power point [45, 46].
This process creates a reserve margin by varying the active power between 𝑃dl

and 𝑃MPPT, achieved by changing the rotor speed between 𝜔dl and 𝜔MPPT. It is
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Output
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Rotational
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Figure 2.6: WT MPPT and deloaded power curves.

preferred to shift the operating point to the right to prevent a decrease in kinetic
energy, which is beneficial for an inertial response, and restrict the wake deficit
while activating FCR. An adaptive look-up table is included in the supplemen-
tary control loop, as shown in Fig. 2.1, for estimating the deloaded power ref-
erence 𝑃𝑑𝑙 , capture and reflect the time-varying characteristic of the proposed
power reserve, and to adjust the rotational speed dynamically. In this method,
the reserve margin 𝛽 represents the deloading percentage that specifies the up-
per limit of generated power and the saving margin that must be maintained as
a constant power reserve. During low-frequency periods, utilizing the genera-
tion margin thus created, the WT active power can be controlled by varying the
rotor speed between 𝜔dl and 𝜔MPPT. The pitch control system will also be ac-
tivated to adjust the limitations of the axial induction factor 𝑎opt

𝑖 to restrict the
wake deficit. Moreover, the kinetic energy stored in rotating masses of WTs
can also be released for the inertial response as further system support.

2.4.4 Optimization problem
The scheduled reserve capacity should be optimally distributed depending on
the location of each turbine within a farm and the airflow deficits caused by
upstream turbines operating with a higher rotational speed than MPPT. There-
fore, optimal rotor speed estimation can be achieved by considering the conflict
between maximum generated power, complex interactions among WTs, and
maximizing kinetic energy, which can be formulated as follows:

𝐸𝑤,𝑖 =
1
2
𝐽𝑖𝜔

2
𝑖 (2.30)

where 𝐽𝑖 is the inertia of each turbine. The objective of the optimization prob-
lem is to maximize the total kinetic energy of the WF 𝐸𝑤,𝑖 and the total out-
put power of the WF

∑
𝑃𝑤,𝑖 . This can be achieved by operating some of the
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WTs in a sub-optimal operation mode, such that minimum wake deflection is
produced. Consequently, the optimization problem for the optimal deloading
control of WTs is given by:

max
𝜔𝑖 , 𝜃𝑖

{
𝑓1, 𝑓2

}
𝜔𝑖 , 𝜃𝑖 ∈ R (2.31)

𝑓1 =
𝑁∑
𝑖=1

𝑃𝑤,𝑖 (𝑣𝑖 , 𝐶𝑃 (𝜔𝑖 , 𝜃𝑖)) , 𝑓2 =
𝑁∑
𝑖=1

𝐸𝑤,𝑖 (𝜔𝑖) (2.32)

s.t.
𝜔𝑖 ⩽ 𝜔MPPT

𝑖 ⩽ 𝜔𝑑𝑙𝑖 ⩽ 𝜔𝑖 (2.33)

𝜃𝑖 ⩽ 𝜃offset
𝑖 ⩽ 𝜃𝑖 (2.34)

𝐶𝑃𝑤,𝑖 (𝜔𝑖 , 𝜃𝑖) ⩽ 𝐶𝑃 (𝑎
opt
𝑖 , 𝑦

opt
𝑖 ) (2.35)

𝐶𝑇𝑤,𝑖 (𝜔𝑖 , 𝜃𝑖) ⩽ 𝐶𝑇 (𝑎
opt
𝑖 , 𝑦

opt
𝑖 ) (2.36)

𝑁∑
𝑖=1

𝑃dl
𝑤,𝑖 =

𝑁∑
𝑖=1

𝑃𝑤,𝑖 (𝑣𝑖) − 𝑃sch
𝑟 (2.37)

where 𝑃𝑤,𝑖 and 𝐸𝑤,𝑖 are given in (2.22) and (2.30) respectively. Constraints
(2.33) and (2.34) limit the deloaded rotational speed and blade pitch angle offset
to the allowable range. The maximum rotor speed is determined by the DC-
link voltage of the power electronic converter, and the minimum rotor speed
corresponds to the optimal tip speed ratio in MPPT mode. The constraints
(2.35) and (2.36) ensure that the optimal power coefficient and thrust force of
each WT are limited by the estimated optimal axial induction factors 𝑎opt

𝑖 and
yaw angles 𝑦opt

𝑖 for the current wake formation given by the ANFIS model.
These two constraints restrict the feasible space for searching the optimal rotor
speed and blade pitch offset based on the unique wake formation caused by
different scenarios of wind speed, direction, and TI. The constraint (2.37) also
ensures maintaining the scheduled power reserve that has been foreseen for the
WF to provide in the day-aheadmarket, which is discussed in (2.3). The optimal
reserve allocation can be achieved by acting individually on pitch and torque
control, ensuring sub-optimal operation for a given 𝑣𝑖 , 𝑦opt

𝑖 and 𝑎opt
𝑖 , which are

estimated by the method discussed in 2.4.2.
The proposed optimization problem aims to find the optimal rotational

speed and blade pitch angle offset of the WTs to achieve the scheduled power
reserve while actively updating the optimal wake-controlled parameters for
different wind scenarios during the operating hour. Algorithm 1 outlines the
optimal power reserve allocation and deployment, taking into account the
operation and wake constraints specified in (2.33-2.37). Since activating the
power reserve will dynamically impact the wake-controlled parameters, the
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Algorithm 1 WT optimal power reserve allocation
Require: given historical datasets of gird frequency and wind speed, WF ge-

ometry, market clearance prices, system constraints, day-ahead forecasts,
scenario selection.

Ensure:
for each hour 𝜏 of the operating day do

At the beginning of the 𝜏th hour:
Estimate quarter-hourly grid frequency fluctuations.
Use k-means clustering:
selecting the cluster centroids to represent Δ 𝑓 .
Find wind scenarios 𝑠1, . . . , 𝑠𝐾 from uncertainty set S.
Estimating the expected value E𝑠𝐾 of:
reduced set of scenarios for wind speed.
for 𝑘 = 1, . . . , 𝐾 do

Solve the second-stage problem:

𝑧𝑘 = max 𝑔(𝑃𝑒 (𝑠), 𝑃𝑟 (𝑠),E𝑠𝐾 )

Solve the first-stage problem:

max 𝑓 (𝑃sch
𝑒 , 𝑃sch

𝑟 ) +
1
𝐾

𝐾∑
𝑘=1

𝑧𝑘 s.t.(2.5 − 2.20)

Solve the MINLP problem using a suitable solver.
end for
submit the optimized bid 𝑃sch

𝑟 for the 24-hour horizon.
During the whole hour:

for each 𝜏′ of the operating hour do
Measure 𝑣, 𝑇 𝐼, 𝑊𝐷
Update the optimal wake-controlled parameters:
approximating 𝑣𝑖 , 𝑎opt

𝑖 , 𝑦
opt
𝑖 using ANFIS model.

Solving (2.31) with constraints (2.33-2.37).
Return 𝜔𝑑𝑙𝑖 and 𝛽offset

𝑖
end for

end for
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choice of shifting the operating point to the right side of the MPPT curve is
made to not only increase kinetic energy for the inertial response but also
restrict the wake-controlled parameters to stay within the predefined optimal
ranges given in (2.35). At the same time, (2.36) ensures an optimal blade pitch
offset that reduces the turbulence generated by the turbine and minimizes wake
effects on downstream WTs while the WT activates FCR through the torque
control system. This happens because of the unique nonlinear relationship
between pitch and torque, which can only be fully controlled when the
rotational speed exceeds the MPPT limit or when the wind speed goes above
the rated value (the mentioned nonlinearities are visually illustrated in Fig.2.4).
Therefore, although the pitch and torque control systems interact dynamically,
wake formation will be actively controlled at the WT local control system by
keeping the rotational speed variations in the right-side deloading zone (using
an adaptive look-up table) while the blade pitch offset guarantees the optimal
wake coordination when rotor speed changes due to the FCR activation in
real-time.

It is worth mentioning that additional constraints and optimization objec-
tives can be incorporated into the proposed problem formulation to further im-
prove the system’s performance. For instance, one can consider minimizing the
cost of energy production by reducing mechanical loads and turbine wear and
tear. This study mainly considered power production and kinetic energy, which
mainly impact the WF’s overall performance and wake mitigation. Moreover,
different optimization algorithms can be explored to solve the problem effi-
ciently, such as genetic algorithms, particle swarm optimization(PSO), or sim-
ulated annealing. This study considered multi-objective PSO to deal with the
nonlinear optimization problem.

2.5 Case study and simulation results
2.5.1 Optimal scheduled reserve
One of the most critical issues with the bidding strategies ofWTs is the stochas-
ticity of wind power and grid frequency. If the decision-maker offers a too-
high bidding quantity, the operator will not be able to satisfy grid requirements
at low wind speeds and will be subject to penalties. However, a low reserve
bidding quantity leads to extra wind power curtailment and declines in rev-
enue. The proposed optimization strategy compromises between an aggressive
and a conservative decision with a high or low bidding quantity, considering
the quarter-hourly based penalties and revenues defined by the TSO. Fig. 2.7
shows the estimated wind and grid frequency variations for a day in January
2020 and the calculated 24-hour optimal bidding schedule when the electric-
ity and FCR prices are competitive (electricity and reserve were considered at
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Figure 2.7: Estimated scheduled energy and reserve contribution.
The time resolution of grid frequency and wind speed datasets is
10 seconds and 15 minutes, respectively.
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Figure 2.9: The WF layout in the North Sea.

the lowest and highest prices according to the energy market in 2019-2020). A
windy day (𝑇 𝐼 > 15%) is considered for studying different bidding scenarios.
The proposed strategy is compared with the baseline approach, in which the
WT contributes 10% of its capacity in the FCR market without considering the
variability of wind and grid frequency, and the efficiency improvement is esti-
mated, respectively. As Fig. 2.7 shows, higher contributions in both the energy
and FCR are decided when the expected wind speed reaches the rated region.
However, the lower or higher contribution in the day-ahead market is sched-
uled according to the estimation of maximum grid frequency deviation. For
instance, although the wind speed goes above 11.4 m/s around 9:00-10:00h, a
very low reserve bid is set due to the expected drop in grid frequency to avoid
any penalty in case of a demanded upward regulation. In contrast, a higher
contribution is set for reserve provision around 23:00-24:00h due to a rise in
grid frequency considering the maximum possible downward regulation (reim-
bursing the curtailment by offering the FCR provision).

2.5.2 Wake modeling and optimal reserve allocation
This section evaluates the performance of the proposed optimal strategy for
the 9.86 MW reserve provision that is decided around 7:00, where the mean
wind speed is 7 m/s, and TI is 5%. Based on the results given in Fig.2.7, the
optimal scheduled reserve around 7:00 clock is set to 9.86 MW when the aver-
age expected available wind power, considering different wake scenarios, is
38.13 MW. The studied wind directions WD are also illustrated in Fig.2.9,
which addresses the geographic coordinates and indicates the onshore, off-
shore, side-shore, cross-offshore, and cross-onshore winds. Fig. 2.8 illustrates
the WF modeling under the applied AIC and WRC strategies for the wind di-
rections specified in Fig. 2.9, and power Relative Increase (RI) that percentiles
the increase of Optimal Power (OP) based on the Initial Power (IP), where WTs
greedily maximize their output power without considering negative impacts of
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Figure 2.10: Estimated optimal wake-controlled parameters.

the wake. The AIC approach involves adjusting the axial induction factor of
each WT to mitigate the wake effects generated by upstream turbines. By opti-
mizing the axial induction factor, AIC limits the excessive reduction in power
output of downstream turbines, preventing significant loss due to wake effects.
On the other hand, WRC adjusts the yaw angle of each WT to redirect the
wake away from downstream turbines and reduce wake-induced power losses
in the wind farm. As illustrated in Fig. 2.8, depending on the wind direction
and the specific wake formation, the optimal wake-controlled parameters, i.e.,
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yaw angles and axial induction factors, can be very different for various sce-
narios of wind direction. Therefore, The optimization problem (2.31) should
be rapidly updated to find the optimal distribution of the power reserve in a
varying wind condition. The computationally efficient estimation of WFs’ op-
timal wake-controlled parameters, discussed in 2.4.2, are given in Fig.2.10,
corresponding to the WF wake modeling under AIC and WRD strategies. The
obtained wake information and optimal scheduled reserve can be fed into the
optimization problem (2.31) to search for the optimal solutions, i.e., optimal
deloaded rotor speeds and blade pitch angles (pitch offsets), maximizing the
total power production and the kinetic energy. A co-evolutionary multi-swarm
particle swarm optimizer based on crowding distance archival management is
applied to find solutions in rapidly changing environments (the implementa-
tion of the proposed algorithm is given in 2). In this algorithm, each particle is
evaluated for its fitness values with respect to two objective functions, 𝑓1 and
𝑓2. External archives 𝐴1, . . . , 𝐴𝐾 are used to store the non-dominated solu-
tions encountered so far, and the best positions from these archives are used to
update the particles in each iteration. The algorithm terminates after a max-
imum number of iterations 𝑇 , and the final Pareto optimal set 𝑆 and Pareto
front 𝐹 are generated by merging the external archives and selecting the non-
dominated solutions, respectively. The function NonDominatedSort performs
non-dominated sorting of the solutions in 𝐴𝑘∪𝑃 and returns the non-dominated
solutions in 𝐴𝑘 . After updating 𝐴𝑘 , the algorithm checks if the size of 𝐴𝑘 has
exceeded the archive size 𝐾 . If the size of 𝐴𝑘 is greater than 𝐾 , the crowding
distance of solutions in 𝐴𝑘 is calculated based on the 𝑓1 and 𝑓2 values. The
solutions with the lowest crowding distance are then removed until the size of
𝐴𝑘 is equal to 𝐾 . This ensures that the external archive maintains a diverse set
of non-dominated solutions by promoting well-spaced solutions in the objec-
tive space. Fig. 2.11 illustrates the optimal solutions and Pareto fronts for the
cross-offshore, cross-onshore, and offshore wind, which have the maximum,
medium, and minimum kinetic capacity, respectively. It also shows that the
maximum power production without any FCR provision should ensure 60% of
the maximum total kinetic energy that can be released in inertial support. Also,
the maximum total kinetic energy can only be achieved in the cross-offshore
and cross-onshore wind by 45% deloadingWTs (increasing theWTs’ rotational
speeds up to 45%). It can be comprehended that yawing upstreamWTs control
wake deflections. Also, the upstream WTs’ axial induction factors are set to a
lower value compared to the other WTs, which are less located in each other’s
stream with minimum wake overlaps. For instance, the axial induction factor
of the upstream T1 (with maximum wake overlap) is set to 0.305 in the cross-
onshore wind (WD0°). However, since T7 and T22 are almost decoupled from
the WF wake, they are allowed to operate at their maximum capacity. The es-
timated power reserve is optimally distributed among the WTs by shifting their
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Algorithm 2 Co-evolutionary PSO with crowding distance
archival management for bi-objective optimization

Require: Initial population of particles 𝑃, maximum number of iterations 𝑇 ,
archive size 𝐾 , fitness function 𝑓1(·) and 𝑓2(·)

Ensure: Pareto optimal set 𝑆 and Pareto front 𝐹
Initialize 𝑃 and 𝐾 external archives 𝐴1, . . . , 𝐴𝐾 with empty solutions
for 𝑡 = 1, . . . , 𝑇 do

for 𝑝 ∈ 𝑃 do
Evaluate the fitness values of particle 𝑝:
𝑓1(𝑝), 𝑓2(𝑝) ← 𝑓1(𝑝), 𝑓2(𝑝)
for 𝑘 = 1, . . . , 𝐾 do

Update external archive 𝐴𝑘 with the non-dominated solutions
from the current population and the archive itself:

𝐴𝑘 ← NonDominatedSort(𝐴𝑘 ∪ 𝑃)
if |𝐴𝑘 | > 𝐾 then

Calculate crowding distance of solutions in 𝐴𝑘 using the 𝑓1
and 𝑓2 values

Remove solutions with the lowest crowding distance until
|𝐴𝑘 | = 𝐾

end if
end for

end for
for 𝑝 ∈ 𝑃 do

Select a random external archive 𝐴𝑘
Update particle 𝑝 using the best position from 𝐴𝑘 :
𝑝.𝑣 ← 𝑤 · 𝑝.𝑣 + 𝑐1 · 𝑟𝑎𝑛𝑑 () · (𝑝𝑏𝑒𝑠𝑡 − 𝑝) + 𝑐2 · 𝑟𝑎𝑛𝑑 () · (𝑏𝑒𝑠𝑡𝐴𝑘 − 𝑝)
𝑝.𝑥 ← 𝑝.𝑥 + 𝑝.𝑣

end for
end for
Generate the Pareto optimal set 𝑆 by merging the solutions in the external
archives 𝐴1, . . . , 𝐴𝐾 :
𝑆 ← 𝐴1 ∪ · · · ∪ 𝐴𝐾
Generate the Pareto front 𝐹 by selecting the non-dominated solutions from
𝑆:
𝐹 ← 𝑝 ∈ 𝑆 : �𝑝′ ∈ 𝑆∗ such that:
𝑓1(𝑝′) ≤ 𝑓1(𝑝) and 𝑓2(𝑝′) ≤ 𝑓2(𝑝)
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Figure 2.11: The Pareto front of the optimal solutions over the
iterations of the bi-objective optimization problem.

rotational speeds to the right side of the MPPT curve shown in Fig.2.6.
Moreover, the algorithm searches for the optimal individual blade pitch

offset to ensure that the estimated WTs’ optimal axial induction factors are
respected. The total WF output should be deloaded by 19.86%. The Pareto
front determines the maximum kinetic energy in different wind directions, the
optimal deloaded rotational speeds, and the blade pitch offsets for the WTs.
Fig.2.12 shows the power reserve allocation and presents the percentual share
of each WT, identifying the WTs’ deloading portion. For instance, T7 and T22
have the maximum share of FCR provision in the cross-onshore wind (WD0°)
because they almost have no conflict with their neighboring WTs. Therefore,
increasing their rotational speed will not cause wake disruption for their neigh-
bors, and for the same reason, no blade pitch offset is required. However, as
Fig.2.8 also visually confirms, T1 in the same wind direction can cause a sig-
nificant wake for T9. Therefore, it plays a minimum contribution to FCR pro-
vision, and its operation will be limited by the optimal axial induction factor,
which is achieved by a blade pitch offset of 1.6°. Taking advantage of the su-
perior computational efficiency of the PSO and the proposed ANFIS model,
the optimal power reserve allocation can be instantly updated by any changes
in the dominant wind speed, direction, or TI. The performance of the proposed
strategy is estimated and compared with the baseline strategy, where 15% re-
serve power is distributed evenly regardless of wake interactions. Furthermore,
the simulations are carried out with different wind speeds and TIs concerning
the dominant inflow wind direction [47] given in Fig.2.13. The results confirm
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Figure 2.12: Optimal power reserve allocation for 7 m/s 5% TI
wind speed, and 9.86 MW scheduled reserve.
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Figure 3. Sketch of the wind-farm model,
showing the orientation and dimensions of
the trapezoid shape and the turbine layout.

Figure 4. Wind rose plot of the height-
averaged winds in the wind-farm layer
(U1, V1).

−κ · U3 with κ = (k, l) the horizontal wavenumber vector. The vertical wave number m(k, l)
follows from the dispersion relation [9]

m2 = (k2 + l2)

(

N2

Ω2
− 1

)

. (8)

The three-layer model is discretised with a Fourier–Galerkin method. The first-order part of
the wind-farm drag involves the product of two spatially dependent functions and is calculated
in physical space in order to avoid the expensive convolution sum in Fourier space. Aliasing
errors are thereby removed using the 3/2-rule [10]. The discretised equations form a linear
matrix equation which is solved with the LGMRES algorithm [11]. We use a numerical domain
of 1000 by 400 km at a uniform grid resolution of 500 m to allow the perturbations to die out
before being recycled by the periodic boundary conditions.

2.2. Wind-farm model

For simplicity, we represent the Belgian–Dutch wind-farm cluster as a trapezoidal shape with
a surface area of 582 km2 (see figures 1 and 3). Moreover, we assume that all wind farms
are equipped with the same 8 MW wind turbine and that a total of 475 turbines are installed
equidistantly in the wind-farm zone in a staggered pattern with respect to the dominant inflow
direction (cf. figures 3 and 4). We consider turbines with a constant thrust coefficient CT = 0.8,
a rotor diameter of 154 m and a turbine hub height zh = 120 m.

The drag exerted by this wind-turbine array on the flow is represented by an external force
fi in the depth-averaged momentum equation for the wind-farm layer. In order to account for
turbine wake interactions, we employ the Gaussian wake model [12] to compute the thrust forces
fk = (fi,k) of the individual wind turbines k = 1, . . . , Nt. In addition to turbine dimensions
and locations, input for the wake model includes the free-stream velocity ufs upstream of the
first turbine (i.e., the velocity measured upstream before local pressure build up in front of the
turbine slows down the approaching flow) and the ambient turbulent intensity I0 at hub height.
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Figure 2.13: Performance of the proposed strategy for the S-W
(side-shore) wind and wind rose for the C-Power layout.

the overall improvement and higher effectiveness at lower TIs, which cause
stronger uniform wake formations and can play a significant role in the optimal
allocation of power reserve.

Moreover, the dynamic behavior of the WF and the activation of the sched-
uled symmetric reserve have been investigated based on the carried-out wake
analysis. Fig. 2.14 depicts the active operation of the WF, which provides 9.86
MW symmetric FCR under turbulent wind conditions. The frequency profile
utilized in this study is designed to simulate the worst-case scenario and is not
representative of natural grid frequency behavior. This profile includes a sig-
nificant drop from 50.2 to 49.8 Hz over 500 seconds to ensure the system can
adequately respond to both upward and downward regulation during extreme
conditions. The study examines the results of the dominant wind speed profile
(maximumwind speed experienced by T1-7, T9-14, and T21) for the side-shore
wind coming from the southwest with 7 m/s mean and 5% turbulence intensity
(TI). T8 and T20 experience a minimum wind speed of 5.46 m/s through the
wake deficit. The rest of the WTs receive reduced wind speeds between 7 and
5.46 m/s.

The WF’s total power production has been estimated using the baseline
control strategy that distributes the power reserve equally among WTs and the
proposed optimal method that actively controls the wake and optimally allo-
cates the scheduled reserve to WTs. As Fig. 2.14 visually depicts, although the
efficiency improvement of the proposed strategy is practically greater than the
baseline method, it can be noticed that it is more significant when the wind
speed drops below the mean value. This is the direct effect of the active wake-
controlled approach, which reduces the adverse impact of wakes and ensures
the efficiency of theWTs at lower wind speeds. The deployment of the FCR, be-
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Figure 2.14: Dynamic operation of WF activating 9.86 MW sym-
metric FCR for side-shore wind from the southwest.
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sides adjusting the blade pitch offset, yaw angle, and axial induction factor, dy-
namically involves regulating the WT’s rotational speed and generator torque.
Although FCR activation generally can be carried out through both pitch and
torque control systems, in this study, to avoid introducing excessive mechanical
loads on the WTs’ blade’s root and the tower, the FCR activation is done solely
by adjusting the generator torque, and the pitch blade offset only keeps the WT
operation in the acceptable optimal wake condition. These control actions and
rotational speed variation betweenMPPT and deloaded operation (flexible band
of 𝜔𝑖) are also shown in Fig.14 for the maximum and minimum wind speeds
with full and marginal FCR activations in different reserve allocations.

The optimization algorithm proposed in this study typically assigns a lower
reserve to WTs located in the wake. Nevertheless, if the optimal yaw angle
sufficiently redirects the wake and preserves wind speed, these turbines may
also contribute to FCR provision. For instance, T8 receives a reduced mean
wind speed of 5.44 m/s. However, with 50°yaw misalignment, its wake is
redirected, and therefore, increasing its rotational speed up to 5% does not
significantly reduce wind speed for T15 in its downstream path. Neverthe-
less, T20 is marginally involved in FCR contribution (𝛽 < 3) since its op-
timal yaw angle is decided for 25°, and its rotor speed increment can cause
a significant wake for T29 and T28. Since wind direction changes can be
frequent in the North Sea and alters the wake behavior, the proposed opera-
tion strategy suggests updating the power reserve allocation on a minutes scale
(60 seconds < 𝜏′ < 600 seconds) to allow theWTs to optimize their power out-
put in response to wind changing conditions and sub-hourly reserve schedules
planned in the day-ahead market.

2.6 Conclusions

This study proposes an operating strategy for WFs with optimal distribution
of FCR. The studied algorithm supports optimal decision-making in the day-
ahead market using the two-stage stochastic programming method consider-
ing data-driven wind speed forecasting and grid frequency for determining an
hourly-based optimal scheduled reserve. Moreover, an optimization problem
is formulated to dynamically allocate the estimated scheduled reserve among
the WTs by actively minimizing wake interactions and maximizing WT’s total
electrical power and kinetic energy. A deep learning approach is suggested for
computationally efficient estimation of the WT wake behavior under axial in-
duction and wake redirection control strategies. The trained ANFIS model can
mimic the WT’s aerodynamic complexity in varying wind speed/direction and
turbulence intensity and provides the optimization problem with appropriate
constraints. The WT’s desired control set points at the supervisory level will
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be determined by searching for the WTs’ optimal deloading percentage, rota-
tional speed, and blade pitch offset, leading to a relative increase in total gen-
erated power. The C-Power WT layout is studied to explore the aerodynamic
coupling behavior in different wind directions. The creation of wake forms can
significantly change the optimal allocation of power reserve and share of each
WT in providing FCR. Results suggest that the proposed optimal operational
framework can optimize theWTs’ overall performance, especially in less turbu-
lent conditions, and benefit WF owners willing to contribute to the day-ahead
market without relying on a perfect storage system.
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Chapter 3

Data-driven Model Predictive
Control for
Wind Turbines providing FCR

The previous Chapter 2 focused on the optimal operation strategy for wind
farms participating in a reserve market and determining wind turbines’ set-
points. In this chapter, we address the challenges of FCR activation at the wind
turbine local control level, starting from the optimal power reserve, allocation,
and the delivered set points such as 𝑃dl, which are decided at the wind farm
level, see also Figure 1.13. Asmentioned in Section 1.5.2, wind turbines exhibit
nonlinear behavior, necessitating the development of advanced control strate-
gies that ensure stable and efficient wind turbine operation. These strategies
must effectively handle varying control setpoints, decided at the wind farm su-
pervisory level while activating FCR and maximizing energy production with
optimal control efforts. These strategies must accurately predict and incor-
porate the complex interactions within the system to identify optimal control
actions that consider system physical constraints and limitations and enhance
overall turbine performance.

Building on the previous chapter’s findings and given the ability of data-
driven model predictive controllers (MPC) to adapt and capture nonlinear be-
havior, see Section 1.4.3 and Figure 1.9, this chapter delves into the application
of neural network-based Model Predictive Control (MPC) to enhance the per-
formance of wind turbine control systems in delivering frequency control ancil-
lary services to the grid. Our primary focus lies in improving the wind turbine’s
response at above-rated wind speeds, presenting a robust and efficient solution
for future power systems. The studied data-driven-based MPC can effectively
manage the nonlinear behavior of wind turbines, enabling them to provide pre-
cise frequency control support while operating under stochastic turbulent wind
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conditions.
This study employs a closed-loop Hammerstein structure to approximate

the behavior of a 5MW floating offshore wind turbine equipped with a Perma-
nent Magnet Synchronous Generator (PMSG).Within this structure, multilayer
perceptron neural networks are utilized to estimate the aerodynamic behavior
of the nonlinear steady-state part. In addition, the linear AutoRegressive with
Exogenous input (ARX) model is utilized to identify the linear time-invariant
dynamic part. This combination allows for an accurate representation of the
turbine’s behavior.

The studied Cascade Hammerstein approach simplifies online lineariza-
tion at each operating point without resorting to nonlinear optimization. This
streamlines the process and eliminates the need for computationally expensive
nonlinear optimization. Moreover, the proposed algorithm employs quadratic
programming to derive control actions, effectively removing the necessity for
nonlinear optimization. This ensures a fast and stable response to grid fre-
quency variations, enabling optimal pitch and torque cooperation. This control
approach at the wind turbine level is able to interact with the wind farm su-
pervisory control level, which oversees the overall operation of the wind farm.
The supervisory control level coordinates and manages the individual turbines
to achieve optimal performance and desired system-wide outcomes.

We compare the performance of the presented data-driven MPC with a (PI)
controller. The results demonstrate the effectiveness of the designed control
system in delivering FCR and frequency regulation services. Furthermore, the
MPC-based control system showcases improved performance and outperforms
the traditional PI controller in terms of response speed, stability, and accuracy.

The adoption of this advanced control strategy promises significant ad-
vancements in wind turbine technology, leading to enhanced grid stability and
optimal utilization of wind energy resources. The study highlights the potential
of the proposed neural network-based Model Predictive Controller to enhance
the smooth contribution of wind farms in reserve markets. Combining inno-
vative control techniques with the inherent benefits of wind energy presents
a promising pathway toward achieving a greener and more efficient power grid.

The contents of this chapter are published in IEEE Transactions on Energy
Conversion [1].
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Abstract:This article presents an application of neural network-based Model
Predictive Control (MPC) to improve the wind turbine control system’s perfor-
mance in providing frequency control ancillary services to the grid. A closed-
loop Hammerstein structure is used to approximate the behavior of a 5MW
floating offshore wind turbine with a Permanent Magnet Synchronous Gener-
ator (PMSG). The multilayer perceptron neural networks estimate the aerody-
namic behavior of the nonlinear steady-state part, and the linear AutoRegres-
sive with Exogenous input (ARX) is applied to identify the linear time-invariant
dynamic part. Using the specific structure of the Cascade Hammerstein de-
sign simplifies the online linearization at each operating point. The proposed
algorithm evades the necessity of nonlinear optimization and uses quadratic
programming to obtain control actions. Eventually, the proposed control de-
sign provides a fast and stable response to the grid frequency variations with
optimal pitch and torque cooperation. The performance of the MPC is com-
pared with the gain-scheduled proportional-integral (PI) controller. Results
demonstrate the effectiveness of the designed control system in providing Fre-
quency Containment Reserve (FCR) and frequency regulation in the future of
power systems.

3.1 Introduction
Modern wind turbines are designed to operate over a wide range of wind speeds
to make wind energy more cost-effective. However, these wind energy sources
generate fluctuating power due to their dependency on intermittent and variable
wind. This issue hinders adequate retaining levels of reliability and stability
of the power grid and the balance of electricity supply-demand. Hence, the
integration of wind energy into the power system meets significant challenges
without addressing this issue [2].

While offshore wind farms are growing in size, the need arises for these
sources to take part in grid balancing and stabilization, e.g., by providing an-
cillary services [3]. The Frequency Containment Reserve (FCR), formerly
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known as the primary frequency reserve, is used to limit the frequency devia-
tion caused by the sudden changes in the generation or load. Offshore wind tur-
bines offer the potential for providing FCR since the wind flow is less variable
compared to inland wind farms where obstacles may divert the wind flow [4],
and specifically in above-rated wind speeds. However, the wind turbine control
system’s capability in providing FCR is challenged by the frequent changes in
operating points and delivering a fast optimal response in the presence of vary-
ing wind speed. These challenges need to be addressed in order to increase the
further share of wind power in the future power system [5].

Over the past decades, the wind turbine control system’s primary goal was
rotor speed regulation and maximum power point tracking with a Proportional-
Integral (PI) design. However, current wind turbines are needed to satisfy the
grid code technical requirements and additional operating conditions demanded
by transmission system operators [6–8]. Some studies suggest that torque con-
trol and pitch control can act as frequency regulation schemes [9–11]. One
approach is that the wind turbine operates in the MPPT mode, and the iner-
tia characteristics can answer the power response to frequency variations on a
short time scale. However, this strategy may cause system instability due to
the rapid variations in the rotational speed of the wind turbine [12]. Another
scheme is that the wind turbine does not operate in MPPT mode but instead
operates at the suboptimal operating limit by under-speeding or over-speeding
control methods to obtain a power reserve for frequency regulation [13, 14].
As a counterpoint, providing power reserve with de-loaded wind turbines in
below-rated wind speed result in a reduced energy yield. On the other hand,
the frequency control scheme, which only relies on the pitch control system,
does not necessarily regulate the frequency variations to a full extent due to the
typical delay of the pitch actuator [11]. Thus, the need arises for an advanced
control design with varying control policies to cope with the system’s complex-
ity, physical constraints, and the intermittent nature of wind, enabling the wind
turbine to provide FCR by taking advantage of the optimal interaction between
pitch and torque control.

In recent years, advanced optimal control methods such as Linear Quadratic
Gaussian (LQG), fuzzy logic, and H∞ have been applied in wind turbine con-
trol systems concerning the power grid integration [15–18]. Despite the robust
behavior of these controllers in maximizing energy conversion, frequency reg-
ulation, or even structural load mitigation, the control performance can still be
improved further, which can be attributed to the intrinsic nonlinearity of the
system and/or the difficulties to incorporate physical constraints. Model-based
Predictive Control (MPC) is becoming increasingly popular in wind energy
applications. It possesses the inherent ability to deal with multi-input multi-
output systems and constraints imposed on manipulated variables [19]. Addi-
tionally, MPC can be made robust to plant uncertainties [11] and measurement
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uncertainties [20]. Finally, MPC has the ability to incorporate wind speed es-
timation [20].

LinearMPC based on a linearized wind turbinemodel has beenwidely used
because it requires less programming and computational power than scheduled
MPC or nonlinear adaptive MPC. For instance, [19] claims that the implemen-
tation of a linear MPC algorithm, based on linearization along with a single
operating point, can achieve a suitable performance in the entire range of wind
turbine operation, as long as the underlying design is robustly made. However,
the parametric uncertainties in the model and the presence of disturbances can
significantly affect the underlying robustness and may degrade MPC’s perfor-
mance in the whole operating range [21, 22].

Scheduled MPC can realize significant load mitigation and reliable power
reference tracking throughout the entire operating region [23]. Soliman et al.
proposed in [24] an MPC technique for controlling a variable-speed variable-
pitch wind turbine that switches between multiple linear models that each are
valid at different operating points. However, when designing scheduled MPC,
varying operating conditions impose difficulties on a smooth switching per-
formance, especially in the transition between partial load region and full load
region where the control variable changes between torque and pitch. In [25]
Ebadollahi et al. introduce a new soft-switching multiple MPC based on the
gap metric and Kalman filter estimator for reduction of torque oscillation but
only in the partial load region. Moreover, nonlinear MPC applications with a
nonlinear optimization algorithm have become increasingly performant but are
still computationally demanding. In their implementation, control actions need
to be taken within a bounded time that is not always met [26]. Artificial Neu-
ral Networks offer the advantage of learning from sensory data to optimize the
wind turbine’s performance in stochastic conditions and fasten computing the
control actions [27, 28].

The purpose of this study is to improve the capability of an offshore float-
ing wind turbine in providing FCR, based on cooperation between the torque
and the pitch controller, by taking advantage of data-driven techniques and op-
timal predictive control. The primary reserve is achieved through a balance
type control, where an absolute power set-point is chosen below the available
power [7, 8, 29]. In this case, the turbine will produce maximum output power
up to the desired power set-point and responds to the grid frequency changes by
tracking the reference power through optimal performance of pitch and torque.

In this research, a 5MW offshore floating wind turbine is firstly simulated
by using the Fatigue Aerodynamic Structure and Turbulence (FAST) software
provided by the National Renewable Energy Laboratory (NREL) [30,31]. Next,
the nonlinear approximations and linear modeling have been carried out based
on the simulations’ obtained datasets in a turbulent wind condition, which can
strongly detail the wind turbine’s nonlinear dynamics. Subsequently, a neural
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network-based MPC algorithm, proposed in [32], is implemented, and its con-
trol performance in providing FCR is evaluated. The proposed derivative-free
optimization method uses neural networks to relax the need for an analytical
model of a large-sized wind turbine, which would require the high numerical
effort of computational fluid dynamics. [33].

To circumvent using nonlinear optimizationmethods, we have applied a lin-
earization, based on Taylor series expansion, around the operating point such
that a quadratic optimization problem can be formulated. For this purpose, the
AutoRegressive with Exogenous input (ARX)model is used as a linear function
of the calculated future input sequence. The calculated control inputs should
satisfy the physical limitations of pitch and torque. Therefore, the determined
vectors of constraints are projected onto the set of feasible solutions. Finally,
a frequency profile is used to test the proposed design’s effectiveness in power
reference tracking through a comparative study. The simulation results con-
firmed that the proposed control approach has the ability to provide transient
and steady-state power reference tracking and effectively improve the stabiliza-
tion of the active power control with an optimal and secure operation of the
wind turbine.

The article is organized as follows: The 5MWwind turbine dynamic model
and the baseline control structure are discussed in section II. Section III intro-
duces the data-driven model approximation based on the cascade Hammerstein
structure using multilayer perceptron (MLP) neural networks and linear ARX
underpinning the proposedMPC structure. Section IV formulates the proposed
control strategy. The controller performance assessment and clarification are
given in section V. Discussion and conclusions are drawn in section VI.

3.2 Wind turbine design
3.2.1 Wind turbine dynamic model
The wind energy conversion system includes wind turbine dynamics and a
PMSG with a power electronic converter that subsequently converts the me-
chanical energy into electrical power. The aerodynamic power of the turbine
rotor 𝑃𝑎 is a function of power coefficient and wind speed.

𝑃𝑎 =
1
2
𝜌𝜋𝑅2𝑣3

𝑤𝐶𝑝 (𝜆, 𝜃𝑐) (3.1)

where 𝑅, 𝑣𝑤 , and 𝜌 are the blade radius, wind speed, and air density, respec-
tively. The power coefficient 𝐶𝑝 (𝜆, 𝜃𝑐) is a function of tip speed ratio and
collective pitch angle 𝜃𝑐. The tip speed ratio 𝜆 is defined as the ratio of rotor
speed Ω𝑟 at the tip of blades to the wind speed 𝜆 = 𝑅Ω𝑟/𝑣𝑤 . Figure 3.1 shows
the power coefficient of the NREL 5MW offshore wind turbine as a function



i
i

i
i

i
i

i
i

3.2 Wind turbine design 103

Figure 3.1: NREL 5-MW offshore wind turbine power coefficient
as a function of tip speed ratio and pitch angle.

of tip speed ratio and pitch angle. The maximum power coefficient of 0.48 is
achieved at the pitch angle of 0 and a tip speed ratio of 7.5.

The NREL 5-MW offshore wind turbine, with given parameters in Table
3.1, can be controlled by means of three kinds of manipulative inputs, i.e., na-
celle yaw angle, pitch angle, and generator torque𝑇𝑔. In this work, it is assumed
that there is no changing direction in wind speed; hence the nacelle yaw angle
actuator is disabled, and both torque and pitch control systems with the baseline
PI controller are used to control the aerodynamic power capture and rotational
speed. The dynamic equation of the wind turbine is described by

𝑇𝑎 − 𝑇𝑔 = 𝐹Ω𝑟 + 𝐽
𝑑Ω𝑟
𝑑𝑡

(3.2)

with 𝐽 being the moment of inertia, 𝐹 is the viscous friction coefficient and
𝑇𝑎 = 𝑃𝑎

Ω𝑟
is the mechanical torque. Furthermore, the electric output power of

the generator is defined as follows:

𝑃𝑔 = 𝜂𝑔𝑇𝑔Ω𝑟 (3.3)

where 𝜂𝑔 is the generator efficiency. The FAST 5-MW baseline wind turbine
model is coupled to a generator and converter model implemented in Mat-
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lab/Simulink. The generator is a direct-drive PMSG, which is modeled with
an equivalent scheme in the rotating reference frame, as presented in [34]. The
efficiency curve is included in the model as a function of different operating
points. This model offers a realistic representation of the dynamics and losses
of the machine since it includes machine inductances, armature reaction effect,
stator copper losses, and iron core losses. The generator control is a field orien-
tation control, which offers direct control of the generator torque by regulating
the q-axis current to a set-point value while keeping the d-axis current at zero.
The power-electronic converter is not modeled up to the switching level, but an
efficiency curve is included. The efficiency curve is obtained from a separate
Simulink model, including both conduction and switching losses, in which the
converter was modeled up to the switching level [35].

Table 3.1: NREL 5 MW Wind Turbine Parameters

Parameters Values
Rated Power 5 MW
Rotor Orientation Upwind
Configuration 3 Blades
Control Variable Speed, Collective Pitch
Cut-In, Rated, Cut-Out Wind Speed 3 m/s, 11.4 m/s, 25 m/s
Cut-In, Rated Rotor Speed 6.9 rpm, 12.1 rpm
Rated Tip Speed 80 m/s

3.2.2 The baseline control design
The pitch and torque baseline controllers are designed to work under specific
wind conditions. The operating mode depends on the wind speed and can be
divided into four operating regions [30]. In the first two regions where the wind
speed is below the rated value, the pitch angle is kept in an optimal position
to extract the maximum aerodynamic power while the generator torque varies
proportionally to the square of the generator speed as follows:

𝑇g−ref (𝑡) = 𝐾optΩ
2
𝑟 (3.4)

where 𝐾opt is calculated by the maximum power coefficient 𝐶p−Max curve and
the optimal tip speed ratio.

𝐾opt =
1
2
𝜌𝜋𝑅5 Cp−Max

𝜆3
opt

(3.5)
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In region two, a cascaded control system is designed to control the rotational
speed by regulating the generator torque. The outer PI controller is the (slow)
power controller providing the reference signal to the inner current controller.
The fast inner PI control loop regulates the generator current by rectifier con-
trol. A predefined lookup table determines the reference signal of the cascaded
control system. The lookup table is generated from the power-speed curves
obtained through simulations. The third region, known as the transition mode
between the second and fourth regions, can be considered an extension of the
second region. In this region, the main concern is to regulate generator speed
at rated power by using pitch control. Finally, in the fourth region, where the
wind speed is above the rated value, the main control objective is to regulate
power capture at the rated power by means of pitch control. In this region, the
constant PI gains are not adequate for effective speed control due to aerody-
namic power’s sensitivity to the blade pitch angle, which considerably varies
during the active power control [31]. However, since pitch sensitivity and blade
pitch angle are nearly linear, the gain scheduling is implemented based on the
gain correction factor determined from pitch sensitivity analysis. The gain-
scheduled proportional-integral (PI) pitch controller is developed at each oper-
ating point to cope with this nonlinear aerodynamic sensitivity. The blade-pitch
sensitivity is calculated for the NREL 5-MW model by performing a lineariza-
tion analysis in FAST.

Furthermore, to be able to provide FCR, a supplementary control loop is re-
quired to control the active power output responding to grid frequency changes.
In [8], three de-loading modes, based on the torque-speed tracking controller,
are presented. In this study, the first mode is used, which reserves a constant
percentage of rated power, and enables the wind turbine to track the power
command based on absolute de-loaded power when the wind speed is above
the rated value. In this case, the turbine will produce maximum output power
up to the desired power set-point. On the other hand, there would be no avail-
able reserve margin when the wind speed is below the rated value, and the wind
turbine only operates in MPPT mode.

3.2.3 Wind estimation

In this article, the proposed MPC strategy uses the preview of the wind speed
over the prediction horizon. The rotor inflow wind speed is simulated by Turb-
Sim [36]. In reality, LIDAR systems are capable of scanning the incoming
raw wind data and extract the wind estimation [37]. We used a data-driven
approach for carrying out the short-term prediction of wind speed with data
collected at 10-millisecond sample time. A Group Method of Data Handling
(GMDH) is used as a semi-supervised deep learning tool that automatically
self-organizes the predictive distribution of variables. GMDH is a nonlinear
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regression method capable of driving the best polynomial network structure to
predict future values from the historical time-series [38].

3.3 Model approximation
3.3.1 Neural cascade Hammerstein model
As discussed in [39,40], the Hammerstein structure can represent the dynamics
of the wind turbine by connecting the static nonlinear mapping in series with a
Linear Time-Invariant (LTI) subsystem. Therefore, the nonlinear steady-state
part and a linear dynamic part are defined separately. The simulated datasets
for the neural approximation include the inputs of the nonlinear steady-state
subsystem (wind speed, tip-speed ratio, and pitch angle), and the main outputs
are the rotor torque and rotor thrust, which are given by the following equations:

𝑇𝑎 =
1
2
𝜌𝜋𝑅3𝑣2

𝑤𝐶𝑇 (𝜆, 𝜃𝑐) (3.6)

𝐹𝑎 =
1
2
𝜌𝜋𝑅2𝑣2

𝑤𝐶𝐹 (𝜆, 𝜃𝑐) (3.7)

where 𝐶𝑇 and 𝐶𝐹 are the torque and thrust coefficients. The cascaded struc-
ture of the Hammerstein model is depicted in Figure 3.2. The input signals
are the vector of aerodynamic variables, and the wind speed is the measured
disturbance, while the output signals of the consecutive networks 𝑥𝑟 (𝐾) are
known as the auxiliary variables in the Hammerstein model and can be defined
as follows:

𝑥𝑟 (𝐾) = 𝑤2,𝑟
0 +

𝑘𝑠∑
𝑖=1

𝑤2,𝑟
𝑖 𝜑(𝑧𝑟𝑖 (𝐾)) (3.8)

where 𝜑 : R→ R is the nonlinear transfer function, 𝐾 the sampling instant and
𝑧𝑟𝑖 (𝐾) the sum of the input signals 𝑢(𝐾) connected to the 𝑖th node (𝑖 = 1, , 𝑘𝑠)
given by

𝑧𝑟𝑖 (𝐾) = 𝑤
1,𝑟
𝑖,0 + 𝑤

1,𝑟
𝑖,1 𝜃𝑐 (𝐾) + 𝑤

1,𝑟
𝑖,2𝜆(𝐾) + 𝑤

1,𝑟
𝑖,3 𝑣𝑤 (𝐾) (3.9)

From (3.8) and (3.9), the following outputs of rotor torque and rotor thrust can
be derived

𝑥𝑟 (𝐾) = 𝑤2,𝑟
0 +

𝑘𝑠∑
𝑖=1

𝑤2,𝑟
𝑖 𝜑

(
𝑤1,𝑟
𝑖,0 + 𝑤

1,𝑟
𝑖,1 𝜃𝑐 (𝐾)

+𝑤1,𝑟
𝑖,2𝜆(𝐾) + 𝑤

1,𝑟
𝑖,3 𝑣𝑤 (𝐾)

)
(3.10)

where 𝑖 is the number of nodes in each layer, 𝑟 is denoting the outputs of the
neural networks (rotor torque and rotor thrust), and 𝑗 is indicating the input
variables, including pitch angle, tip speed ratio, and the estimation of wind
speed, which is considered as measured disturbances. Weights of the first layer
and second layer are denoted by 𝜔1,𝑟

𝑖, 𝑗 and 𝜔
2,𝑟
𝑖 .
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Controller
(Manipulated variables)

Linear dynamic
Nonlinear steady-state

Neural network I

Neural network II

Auxiliary variables

Linear equation

Figure 3.2: Wind turbine cascaded Hammerstein Structure.

...

1
1

Inputs OutputHidden nodes

Figure 3.3: The neural network’s structure used in the Hammer-
stein model
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3.3.2 Nonlinear steady state approximation
The nonlinear part is approximated by the function 𝑔 : R𝑛𝑥 → R𝑛𝑟 and ℎ :
R𝑛𝑥 → R𝑛𝑟 , by using the MLP neural network with 𝑘𝑠 = 10 hidden nodes in
the first layer and 1 node in the second layer. The neural network’s structure
is shown in Figure 3.3. The neural networks have the ability to learn the so-
phisticated nonlinear relationships among the inputs and accurately capture the
essential aerodynamic behavior of the system in turbulent wind conditions. The
datasets, including the input variables and the outputs of the nonlinear dynamic
part, are obtained from simulation and randomly divided into the train, valida-
tion, and test datasets. 70% of the datasets are used to train the MLPs, and 30%
of the datasets are used for test and validation. The statistical results, i.e., mean
square error (MSE), error mean, and error standard deviation (StD), are given
in Table 3.2. The results of the nonlinear approximation for the tested dataset
are depicted in Figure 3.4, showing an effective and accurate performance of
the MLPs.

Table 3.2: Validation of Nonlinear Steady-state Approximation

Rotor torque (𝑇𝑎) Rotor thrust (𝐹𝑎)

Dataset MSE Error
Mean

Error
StD MSE Error

Mean
Error
StD

Train 59.6 0.04 7.72 275.08 -0.01 16.58
Validation 64.9 0.35 8.05 258.59 0.20 16.08

Test 70.4 -0.19 8.39 303.40 -0.35 17.42
All 62.0 0.05 7.87 276.86 -0.03 16.64

3.3.3 Linear approximation
The LTI subsystem must include the aerodynamics of the drivetrain, the gen-
erator, and the rotor dynamics. Therefore, the inputs of the linear dynamic
part consist of the rotor thrust, the rotor torque, and generator torque, while the
electrical power is considered as the output. A linear data-based approximation
approach is proposed, based on a low-order linear ARX model, which involves
detecting the system structure by finding the regressors with the highest contri-
bution to the output. Figure 3.5 illustrates the result of the linear estimation us-
ing ARXwith the fourth-order polynomial function, including the mean-square
error (MSE) and the final prediction error (FPE). The auxiliary variables and
the equation of the linear dynamic part can be defined by (3.11) and (3.12)

𝑉 (𝐾) =
[
𝑥𝑟 (𝐾) 𝑇𝑔 (𝐾)

]
(3.11)

𝐴(𝑞−1)𝑝𝑒 (𝐾) = 𝐵(𝑞−1)𝑉 (𝐾 − 𝑛𝑘) + 𝑒(𝐾) (3.12)
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(a)

(b)

Figure 3.4: (a) Approximation of nonlinear steady-state part using
MLP, (b) Histogram of errors related to the model approximation.
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Figure 3.5: Estimation of linear dynamic part using ARX.

where the parameters of 𝐴 and 𝐵 consist of polynomials of the time delay op-
erator 𝑞−1 defined by (3.13), 𝑛𝑎 and 𝑛𝑏 are the constants that define the order
of the LTI subsystem dynamics. The delayed order 𝑛𝑘 is the number of input
samples that occur before the input affects the output, called the system’s dead
time. 𝑒(𝐾) is white-noise disturbance.

𝐴(𝑞−1) = 1 + 𝑎1𝑞
−1 + ... + 𝑎𝑛𝑎𝑞−𝑛𝑎

𝐵(𝑞−1) = 𝑏1𝑞
−1 + ... + 𝑏𝑛𝑏𝑞−𝑛𝑏

(3.13)

From (3.12) and (3.13), the consecutive outputs of the Hammerstein model can
be calculated as follows:

𝑃𝑒 (𝐾) =
𝑛𝑟∑
𝑟=1

𝑛𝑏∑
𝑙=1

𝑏𝑙 (𝐾)𝑉 (𝐾 − 1) −
𝑛𝑎∑
𝑙=1

𝑎𝑙 (𝐾)𝑃𝑒 (𝐾 − 1) (3.14)

The Hammerstein model’s accuracy can be improved by increasing the
number of hidden layers in the neural network structure. Also, by increasing
the order of the polynomial function estimating the linear dynamic behavior.
In this work, the model complexity is kept as simple as possible to have a good
balance between the accuracy and computational complexity of the numerical
optimizer.

3.4 Proposed control strategy
3.4.1 MPC algorithm based on neural Hammerstein model
This section discusses the MPC algorithm based on the neural Hammerstein
model, including predicting the outputs, the definition of the cost function, and
online linearization. The general structure of the presented algorithm to control
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the wind turbine energy conversion system is shown in Figure 3.6. The vector
of decision variables is calculated at each sampling instant by using quadratic
optimization. Also, the coefficients of the linear approximation of the neural
Hammerstein model are calculated numerically based on the Taylor series ex-
pansion formula and can be represented as follows:

𝑎𝑙 (𝐾) = 𝑎𝑙
𝑏𝑙 (𝐾) =

𝑛𝑟∑
𝑟=1

𝑏𝑙
𝑘𝑠∑
𝑖=1
𝜔2,𝑟
𝑖

𝑑𝜑 (𝑧𝑟𝑖 (𝐾−𝑙) )
𝑑𝑧𝑟𝑖 (𝐾−𝑙)

𝜔1,𝑟
𝑖,𝑛

(3.15)

Coefficients in (3.15) are calculated for all 𝑙 = 1, . . . , 𝑛𝑏 and 𝑛 = 1, . . . , 𝑛𝑥 . It
is noteworthy to mention that the coefficients of the linearized model 𝑎𝑙 (𝐾) and
𝑏𝑙 (𝐾) depend on the current operation point. In contrast, the constants 𝑎𝑙 and 𝑏𝑙
denote the parameters of the linear dynamic part of the model. However, thanks
to the cascaded Hammerstein structure, the linear part of the model equals the
linearized model’s parameter at the current operating point for sampling instant
𝐾 . More details can be found in [32]. Therefore, the predicted output trajectory

Figure 3.6: The structure of the MPC algorithm with nonlinear
prediction and linearization for current operating point.
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(𝑝 = 1, . . . , 𝑁 with prediction horizon 𝑁) can be calculated as follows:

𝑝0
𝑒 (𝐾 + 𝑝 |𝐾) =

𝑛𝑟∑
𝑟=1

𝑛𝑏∑
𝑙=1
𝑏𝑙

©­­«𝑤
2,𝑟
0 +

𝑘𝑠∑
𝑖=1
𝑤2,𝑟
𝑖 𝜑

©­­«
𝑤1,𝑟
𝑖,0 + 𝑤

1,𝑟
𝑖,1 𝜃𝑐 (𝐾 − 1)

+𝑤1,𝑟
𝑖,2𝜆𝑔 (𝐾 − 1)

+𝑤1,𝑟
𝑖,3 𝑣𝑤 (𝐾 − 𝑙 + 𝑝 |𝐾)

ª®®¬
ª®®¬

+
𝑛𝑏∑
𝑙=1
𝑏𝑙

(
𝑇𝑔 (𝐾 − 1)

)
−
𝑛𝑎∑
𝑙=1
𝑎𝑙𝑃

0
𝑒 (𝐾 − 𝑙 + 𝑝 |𝐾)

(3.16)

Equation (3.16) can be obtained from (3.11), which defines the vector of ax-
illary variables, and (3.14). The predicted electrical power is given by (3.17),
which consists of two parts; the first part is a function of the currently calculated
control action of pitch and torque, whereas the second part, given by (3.16), de-
pends on the past measurements of manipulated variables and tip speed ratio.

𝑃̂𝑒 (𝐾) = 𝐺 (𝐾)Δ𝑢(𝐾) + 𝑃0
𝑒 (𝐾) (3.17)

where Δ𝑢(𝐾) is the vector of manipulated variables and is given by:

Δ𝑢(𝐾) =



Δ𝜃𝑐 (𝐾 |𝐾)
· · ·

Δ𝜃𝑐 (𝐾 + 𝑁𝑢 − 1|𝐾)
Δ𝑇𝑔 (𝐾 |𝐾)
· · ·

Δ𝑇𝑔 (𝐾 + 𝑁𝑢 − 1|𝐾)


(3.18)

The dynamic matrix 𝐺 (𝐾) is of dimensionality 𝑁 × 𝑛𝑢𝑁𝑢 (𝑁𝑢 and 𝑛𝑢 are the
preset control horizon and the number of manipulated variables) consists of the
step response coefficients of the linear part of the Hammerstein model, which
is computed for each operating point.

3.4.2 Cost function and Constraints

As mentioned in section 3.2.2, an available power reserve is needed to be able
to provide FCR. As illustrated in Figure 3.7, the generated output power needs
to be curtailed to enable the wind turbine to provide an adequate amount of
FCR in response to frequency deviations. A corresponding change in active
power output is directly proportional to Δ 𝑓 , which is the difference between
the nominal frequency 𝑓ref = 50 𝐻𝑧 and the real-time frequency 𝑓actual, with
a droop coefficient of 𝐷. The relationship between active power changes and
grid frequency deviations can be expressed as follows:

Δ𝑃 = −𝐷Δ 𝑓 (3.19)
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where Δ 𝑓 is the incremental change in frequency and Δ𝑃 is the incremental
change in power [41]. The operating power reference 𝑃ref

𝑒 of the deloaded wind
turbine is calculated by:

𝑃ref
𝑒 = 𝑃dl

𝑒 + Δ𝑃 (3.20)

The aim is to operate the wind turbine in a suboptimal mode through the de-
loaded control strategy so that a certain amount of reserve is always available
to supply additional active power in case of frequency deviations in a way that
the droop response will adjust the reference power.

Finally, the general MPC optimization task can be defined as the quadratic
optimization problem given by (3.21). The first term of the cost function 𝐽 (𝐾)
drives the electrical output towards the desired power reference, and the second
term seeks to minimize variations of the control inputs.

min
Δ𝑢(𝐾 )

𝜀min (𝑘 ) , 𝜀max (𝑘 )

𝐽 (𝐾)

𝐽 (𝐾) =




𝑃ref
𝑒 (𝑘) − 𝐺 (𝐾)Δ𝑢(𝐾) − 𝑃0

𝑒 (𝐾)


2
𝑀

+ ‖Δ𝑢(𝐾)‖2𝑅
+𝜌min



𝜀min(𝑘)


2 + 𝜌max‖𝜀max(𝑘)‖2


(3.21)

subject to

𝜃min
𝑐 ≤ 𝜃𝑐 (𝐾) ≤ 𝜃max

𝑐

−Δ𝜃max
𝑐 ≤ Δ𝜃𝑐 (𝐾) ≤ Δ𝜃max

𝑐

0 ≤ 𝑇𝑔 (𝐾) ≤ 𝑇𝑔max

−Δ𝑇𝑔max ≤ Δ𝑇𝑔 (𝐾) ≤ Δ𝑇𝑔max

𝑃min
𝑒 − 𝜀min(𝑘) ≤ 𝑃̂𝑒 (𝐾) ≤ 𝑃max

𝑒 + 𝜀max(𝑘)
𝜀min(𝑘) ≥ 0, 𝜀max(𝑘) ≥ 0

(3.22)

where 𝜃min
𝑐 , 𝜃max

𝑐 , Δ𝜃max
𝑐 , 𝑇𝑔min, 𝑇𝑔max,and Δ𝑇𝑔max are the constraints imposed

on the magnitude and the increments of the blade collective pitch angle and the
generator torque respectively. In the optimization problem, to avoid the feasible
set becoming empty, the hard output constraints can be violated by the factors
(𝜀min(𝑘), 𝜀max(𝑘)), which determine the degree of constraint violation for the
consecutive sampling instant over the prediction horizon and 𝜌min, 𝜌max ≥ 0
are penalty coefficients. The diagonal matrices 𝑀 and 𝑅 are constantly and
independently considered for the whole prediction and control horizons. The
control parameters and the imposed constraints on the manipulated variables
are given in Table 3.3.

The stability of the proposed MPC for wind turbine active power control
can be analyzed in terms of practical stability. A very detailed analysis of the
quadratic MPC with a discrete-time system can be found in [42] based on the
definitions of the positively invariant set and the practical-Lyapunov function.
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Table 3.3: Control Parameters and Constraints

Parameters Values Definitions

𝜃max
𝑐 90º Maximum blade pitch
𝜃min
𝑐 0º Minimum blade pitch

Δ𝜃max
𝑐 8 º/s Maximum blade pitch rate

Δ𝜃min
𝑐 -8 º/s Minimum pitch rate

𝑇𝑔
max 4,704 kNm Rated generator torque

Δ𝑇𝑔max 150 kNm/s Maximum generator torque rate
Δ𝑇𝑔min -150 kNm/s Minimum generator torque rate
𝑁 10 s Prediction horizon
𝑁𝑢 3 s Control horizon
𝑀 1.48 Weighting factor
𝑅 1.13 Weighting factor

deadband

power reserve

Figure 3.7: FCR control loop.

Another very detailed analysis regarding the application issues of MPC control
for Hammerstein systems is presented in [43]. A short review of MPC algo-
rithms’ stability and robustness with nonlinear models, including the specific
structure of the Hammerstein model, is given in [32]. It has been discussed that
the stability of the proposed MPC degrades into the feasibility of the cost func-
tion optimization process, i.e., whether a solution to the optimization problem
exists. It is only required to calculate a feasible solution for stability, which sat-
isfies all the optimization problem constraints in (21). Hence, it is not essential
to find the global or even a local minimum of the optimization problem at each
sampling instant. Alternatively, the calculated value of the cost function ne-
cessitates being decreasing in consecutive iterations. Although this may result
in a suboptimal solution and may not lead to ideal control performance, it will
guarantee the close loop stability on account of choosing the finite set control
principles, which can be a great advantage of the proposed strategy.

Moreover, to prevent excessive computation time, the repetitions are set to
last for a fixed number of iterations. As a result, the execution of the MPC
algorithm, running on an Intel(R) Core(TM) i7-7820 2.9 GHz CPU with 8 Gb
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RAM, takes less than 120 milliseconds for the maximum number of iterations
ensuring shorter computational time at each time step concerning the sampling
time.

Figure 3.8: Frequency deviation for 450 seconds provided by
ELIA (the Belgian transmission system operator).

Figure 3.9: Wind turbine output power providing FCR.
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3.5 Verification and results

In this section, we compare the results of the two control systems developed to
achieve the active power control of the wind turbine, which is providing FCR.
Their capability of tracking the desired power reference command by actuating
the generator torque and the collective blade pitch angles is tested. Belgian TSO
calculates the moving average of 10 seconds to examine whether at least 90% of
the requested FCR volume is successfully delivered. In this study, a frequency
profile from [44], as shown in Figure 3.8 with 450 seconds of the grid frequency
and 10 seconds time interval, is used to test the proposed design’s effectiveness
in power reference tracking. Moreover, the GMDH is used to have a ten-second
forecast of wind speed. Therefore, with the knowledge of the plant’s dynamics,
the prediction horizon is set to 10 seconds such that the dynamic model gives a
good estimation. A longer prediction horizon has not been considered to avoid
excessive propagation of the prediction error.

Furthermore, the simulations have been carried out for the control horizon
set to 10 to 50% of the prediction horizon (1s, 2s, ..., 5s). A time interval of 3s
is an acceptable response and does not pose an overly enormous computational
burden. Moreover, the weighting coefficients are chosen to balance the ma-
nipulated variables’ increments and the reference tracking performance. The
weighting matrices are set to the values given in Table 3.3 to force the Hes-
sian matrix to be positive-definite, in which the quadratic programming has a
unique solution when no constraints are defined. In this article, the wind tur-
bine’s contribution has been set to 1 MW for a 200 mHz symmetric FCR with
a predefined dead band of 10 mHz. The de-loaded power setpoint 𝑃dl

𝑒 has been
set to 4.1 MW. Both of the proposed and baseline controllers respond to the
frequency profile shown in Figure 3.8. Extensive simulations are carried out
with the wind turbine subject to realistic turbulent wind speed. A realization
of turbulent wind speed is used, with 10.9% turbulence intensity (TI) and 15.3
m/s mean wind speed, to ensure that the wind turbine operates in the full load
region. The results of the proposed MPC design are compared with the gain
scheduling PI as the baseline controller. Figure 3.9 illustrates the performance
of both controllers in power reference tracking. The Root Mean Square Error
(RMSE) and Standard Deviation (StD) are commonly used to evaluate the ref-
erence tracking miss-match. The RMSE and StD values of the electrical power
in the baseline strategy are 678.86 and 775.12 Watt respectively, while in the
proposed strategy, these values are reduced to 36.48 and 238.77 Watt respec-
tively. One can observe that the proposed controller ensures a stable active
power response compared to the gain-scheduled PI with significantly improved
tracking performance. The corresponding pitch and generator torque actions
together with rotational speed are given in Figure 3.10 a-c, respectively. Due
to the ability of the proposed control strategy to utilize a wind speed estima-



i
i

i
i

i
i

i
i

3.5 Verification and results 117

(a)

(b)

(c)

Figure 3.10: The performance of two control strategies for a wind
speed of 15.3 m/s with 10% TI (a) Optimal behavior of pitch, (b)
Generator torque reaction, (c) Rotational speed

.
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tion and predict the optimal solution, the operation of the pitch angle is min-
imized. Therefore, the dynamics of the pitch system decrease as well, which
may positively affect the life of the pitch mechanism and decrease maintenance
costs. Also, we added a penalized soft constraint to the MPC algorithm in a
way that the proposed controller will not allow the electrical power to exceed
5% of the rated value. Due to the added penalized soft constraint, the gener-
ator torque would slow down the over-speeding wind turbine varying in small
perturbations. The smoother rotor speed might also offer a damping effect on
the drivetrain torsional vibrations [45].

The FAST simulator is based on blade element momentum theory and in-
cludes many features such as distributed mass and stiffness of the blades and
tower, dynamic wake effects, and hub and blade tip losses. In this article, the
wind turbine blade and bending moments have been monitored to examine the
impact of the proposed control strategy on the wind turbine structural loads. As
expected, due to the minimization of the pitch action, Figure 3.11 shows a sig-
nificant reduction in the amplitude of tower bending moments and an average
reduction of blade root out-of-plane moment, while no meaningful reduction
can be found in the blade root in-plane bending moment. Also, the proposed
control design does not increase blade root edgewise and flapwise bending mo-
ments. The RMS values of the applied loads are given in Table 3.4. Although
the structural loadmitigation was not themain objective of the proposed control
design, as a side outcome, a reduction of mechanical loads (compared with the
baseline control scheme) can be achieved due to the optimization of the blade
control action in response to grid frequency changes.

Table 3.4: The RMS of Applied Loads

RMS Value
Bending Moment (MN.m)

Baseline
Controller

Proposed
Controller

Blade Root In-Plane 2.79 2.75
Blade Root Out-of-plane 8.10 7.34
Tower Base Fore-Aft 53.41 49.15

Tower Base Side-to-Side 5.15 2.40

The droop constant is increased up to 100% to monitor the proposed
scheme’s performance near the constraints. The test results are depicted in
Figure 3.12 for a time interval of 10 seconds. The pitch and torque variability
determine the optimum operating point for the MPC controller. Figure 3.12
shows the upper and lower limits of pitch and torque rate, rate, illustrating the
wind turbine’s degree of controllability. The optimization algorithm enables
the proposed design to reach the torque rate limit at a faster rate than the
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Figure 3.11: Wind turbine applied loads under baseline and pro-
posed control strategies.
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Figure 3.12: Operation around constraints

baseline controller while optimizing the pitch rate. As shown in Figure 3.12,
the torque rate of the MPC at 210 seconds approaches its upper limit and
supports the slow dynamics of the pitch to maintain the power reference
tracking with the small overshoot. The advantage of the designed MPC is that
the constraint limits can be synthetically adjusted to reduce the manipulated
variables’ control action or improve the power reference tracking based on the
physical and operational conditions. For instance, the pitch rate constraints
can be more restricted to avoid extreme actions of the pitch. Although this
might result in poor reference tracking, the excessive mechanical loads will be
mitigated due to pitch movement minimization.

Furthermore, the proposed MPC algorithm aims to ignore the wind dis-
turbances that appear in periodic fluctuations of wind shear instead of trying
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Figure 3.13: Wind speed with different turbulence intensities.

Figure 3.14: Robustness of the proposed controller in the presence
of turbulent wind.
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to reject them, which results in less control action in pitch and optimal torque
behavior. Finally, the inflow wind speed with three different Turbulence In-
tensities (TI), shown in Figure 3.13, is applied to both controllers. The robust
performance of the proposed controller against the variant TI is demonstrated
in Figure 3.14. Another finding is that the uncertainties in wind estimation do
not deteriorate the overall performance of the proposed controller, even in the
presence of unexpected TI.

3.6 Conclusion and discussion
In this article, the proposed MPC enables the offshore wind turbine to provide
FCR by tracking a power reference signal, given by the supplementary control
loop, with an optimal pitch and torque action. The power reference tracking
following a frequency disturbance has been introduced, and the robust perfor-
mance of the proposed controller has been compared with the baseline con-
troller. The proposed controller offers a stable response to frequency changes
and significantly enhanced the capability of reference tracking. The stability
of the control system is conducted from the system’s behavior during the simu-
lations. Moreover, the results confirm the robust performance of the proposed
controller in the presence of turbulent wind. Using the neural Hammerstein
model increases the accuracy of the closed-loop system approximation. The
online linearization makes it possible to use a reliable quadratic programming
method and eliminates the necessity of repeating nonlinear optimization at each
sampling instant. The obtained results showed that the proposed approach was
able to provide FCR despite the uncertainties in terms of wind speed measure-
ments and turbulence intensity.

Contributing to frequency regulation services may cause an increase in the
blade and tower mechanical loads, leading to fatigue failures, which is an eco-
nomic disincentive due to lifetime reduction. On the other hand, increasing
the penetration of renewable sources has led some countries, e.g., Ireland and
the UK, to set specific requirements and grid codes for wind power generating
units to provide ancillary services. Therefore, employing the proposed predic-
tive control algorithm, which is able to offer the power reserve with minimized
power error and mechanical loads, can be an inspiration for many wind energy
operators and encourage manufacturers for further investments.

In the future of this research, more uncertainty sets such as wind gusts and
the associated controller parameters that might be corrupted with contingencies
could be computed offline for the different wind speed scenarios. Therefore, an
online computational adjustment could be carried out to secure the system’s
behavior in all operating conditions.
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Chapter 4

Adaptive Control Strategy
Supporting Varying Reserve for
Wind Turbines providing FCR

The previous Chapter 3 was focused on optimally providing FCR using a data-
drivenMPC. The data-driven aspect was focused on accelerating the underlying
optimal control problem considering the nonlinearity of the system. As seen in
Figure 1.13, see also the previous chapter, an FCR control loop lets the data-
driven MPC control the power reference reacting to grid frequency changes in
the above-rated turbulent wind condition by considering a fixed power reserve
margin. In this chapter, we dive further into the local FCR control loop that
can cope with altering reserve margin in partial and full load regions, provid-
ing adaptive torque and pitch control actions. Here, we start with a low-level
PI controller and show how adaptation can be implemented on wind turbines.
The seamless integration of these strategies with the wind farm’s supervisory
control level enables a harmonized and optimized approach to control actions
and FCR provision in a wide range of operating conditions, maximizing Wind
farms’ overall efficiency and compatibility, making them a compelling choice
for sustainable energy production.

So, this chapter focuses on the implementation of adaptive deloading strate-
gies, as presented in Section 1.3.1, with particular emphasis on addressing the
second challenge discussed in Section 1.5.2. The proposed adaptive operational
strategy is designed to be integrated at the local control level of wind turbines
with the primary objective of providing FCR while adhering to optimal set-
points as defined in Chapter 2. These optimal setpoints, such as the varying
deloading percentage (𝛽%), are determined at the wind farm supervisory level.

To evaluate the strategy’s performance, the study considers fixed and per-
centage power reserve methods. Additionally, gain scheduled fuzzy-PI con-
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trol is applied to ensure reliable FCR provision in turbulent wind conditions.
The proposed strategy exhibits an optimal response to grid frequency changes,
effectively mitigates power fluctuations, and enhances generator speed regula-
tion.

Compared to the MPC approach presented in Chapter 2, the adaptive oper-
ational strategy in this chapter offers complementary advantages. While MPC
provides a comprehensive and accurate representation of the turbine’s behav-
ior, the adaptive strategy excels in all operating regions and reserve modes.
It ensures stable control even in the presence of turbulent wind speeds, mak-
ing it a reliable choice for wind turbines operating in variable wind speeds,
constantly switching between partial and full load regions. Furthermore, the
proposed strategy is cost-effective, adaptable to various operating conditions,
and can seamlessly integrate into existing pitch and torque control systems of
WTs for optimal FCR provision.

In this approach, the adaptive operational strategy at the local control
level of wind turbines interacts with the wind farm’s supervisory control level
through the decided reserve percentage 𝛽%, deloaded rotational speed 𝜔dl

𝑖 and
power 𝑃dl

𝑤,𝑖 similar to the MPC controller discussed in the previous chapter
that follows the specified deloaded power 𝑃dl

𝑤,𝑖 . The wind farm can achieve
optimal FCR provision and enhanced performance in all operating regions by
integrating the proposed control approaches discussed in Chapters 3 and 4.
This integration allows for the effective coordination of control actions across
the wind farm, maximizing the overall system performance.

Moreover, the study encompasses the development of an optimal and adap-
tive deloading strategy to support FCR provision for individual wind turbines,
takes into account the unpredictable behavior of grid frequency andwind speed.
The strategy involves estimating an adaptive reserve margin, utilizing short-
term grid frequency predictions, to dynamically adjust the reserve margin and
control setpoints within an FCR supplementary control loop. By incorporating
grid frequency prediction, the adaptive deloading strategy ensures that the wind
turbine efficiently responds to changes in grid frequency and wind conditions.
This flexibility not only facilitates seamless FCR provision but also maintains
operational efficiency by optimizing the turbine’s power output in alignment
with the wind farm’s overall objectives.

The comprehensive and adaptive operational strategy presented in this
chapter showcases its potential to significantly enhance wind turbine perfor-
mance across all operating regions by providing reliable FCR. Notably, both
control strategies discussed in chapter 2 and chapter 3 mutually complement
each other, resulting in a powerful combined solution for wind farm control.
The combination of these strategies excels in delivering reserves efficiently
in all operating regions, even in the presence of turbulent wind conditions,



i
i

i
i

i
i

i
i

131

highlighting their robustness.
Finally, the smooth incorporation of these strategies into the wind farm’s

supervisory control system creates a synchronized and efficient method for
implementing control actions. This fusion guarantees cost-effective FCR pro-
vision and bolsters adaptability across various operational scenarios. Through
collaborative coordination, these strategies synergistically enhance the wind
farm’s efficiency and stability, solidifying their appeal as a sustainable energy
production solution.

The contents of this chapter are published in ELECTRIC POWER SYSTEMS
RESEARCH [1].
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An Adaptive Operational Strategy for En-
hanced Provision of Frequency Containment
Reserve by Wind Turbines: data-driven based
power reserve adjustment
Nezmin Kayedpour, Arash E. Samani, Jeroen D. M. De Kooning, Lieven
Vandevelde, and Guillaume Crevecoeur

Published in ”Electric Power Systems Research”, 2023

Abstract:Due to the growing penetration of renewables, Wind Turbines (WT)
are becoming increasingly crucial for grid balancing services, such as Fre-
quency Containment Reserve (FCR). This study proposes an adaptive opera-
tional strategy that optimally accommodates the power reserve and controls the
active power based on grid frequency uncertainties and stochastic wind vari-
ations. The proposed approach includes an end-to-end solution, considering
fixed and percentage reserve methods, from estimating an appropriate reserve
margin to the real-time computation of generator torque and pitch control set-
points in response to grid frequency variations. A real-time look-up table is in-
corporated to actively adjust the reserve and adapt the deloading rotor speed-
power curve based on a short-term estimation of the grid frequency using a
deep-learning technique. Applying the proposed strategy improves WTs’ FCR
contribution by at least 3.3 times reserve in MW. Moreover, adaptive fuzzy-PI
pitch-torque controllers are suggested to enhance the WT dynamic response
and ensure smooth provision of FCR. Simulation results of a 5MW-NREL off-
shore model show the improvement of the fuzzy-PI in power reference tracking,
rotor speed regulation, and average studied mechanical load parameters in the
range of 2.14-11.69%, 11.1%, and 8.81%, respectively, for an average of 250
kW reserve, confirming an overall improvement.

4.1 Introduction

Wind energy conversion systems are among the most promising technologies
that support a low-carbon energy system. The installed wind power capacity
has grown substantially during the last couple of decades [2]. This capacity has
been increased up to 837 GW by the end of 2022 [3]. Approximately 12.4%
of the new capacity is installed in the last year, only 1.8% lower than 2020’s
record year [3]. Offshore wind energy is expected to supply around 30% of
the electricity demand by 2050, representing at least 50% of the total energy
mix [4]. However, extensive penetration of wind sources into the power grid
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seriously affects the power system’s frequency stability. The primary reason
for the blackout events on 9 August 2019 in the UK was the sudden decline in
frequency beyond the regulation capability of system inertia [5]. The unpre-
dictability, stochastic, and highly fluctuating nature of wind energy with less
directly coupled inertia are the main reasons that result in the grid’s inertia
degradation consequently [6]. Therefore, system operators require to involve
wind energy sources in providing ancillary services. These ancillary products
can be in the form of hierarchical frequency control, including Frequency Con-
tainment Reserve (FCR), automatic Frequency Restoration Reserve (aFRR),
and manual Frequency Restoration Reserve (mFRR) [7, 8]. Many Wind Tur-
bine (WT) manufacturers have already rolled out enhanced control systems that
include the functionality of inertial and frequency response [9]. However, de-
veloping methodologies to improve the capability of providing active power
control and frequency regulation is an active field of research, both in academia
and industry [10–13]. This article mainly focuses on the FCR provision, in
which an operating reserve is required for constant containment of frequency
deviations from the nominal value to maintain the power balance in the aggre-
gate synchronous grid.

Numerous investigations have been performed to focus on the possibility of
WTs participating in frequency containment reserve through active power con-
trol. In order to improve the frequency regulation capability, an available power
reserve is needed for actively responding to grid frequency changes. There-
fore, the WT’s power output must be deloaded by specific percentages [14].
However, the deloading strategies are not yet perfectly developed for WTs in
different wind speed zones and operating conditions. In [15], the operating
wind speed is divided into low, medium, and high zones, and a deloading strat-
egy for WTs is developed to perform differentiated reserve capacity allocation.
The power reserve in different operating conditions can be obtained by der-
ating/deloading the WT through the pitch controller (above-rated wind speed),
lowering the torque, and operating on a suboptimal tip-speed ratio (below-rated
wind speed). The realizations of deloading operation in DFIG-Based WTs,
which can be done via rotor over speeding control (converter controlled) and
pitch angle control (actuator controlled), are discussed in [16]. Recently, the ac-
tive power control provision for Variable-Speed WTs has been studied in [10],
improving the primary frequency contribution considering WT’s health condi-
tion. Moreover, adaptive frequency control strategies in isolated power [17]
and in a grid-connected system under power imbalance conditions [18] are stud-
ied considering wind fluctuations and power smoothing.

Furthermore, advanced control approaches such asmultiple-input multiple-
output Linear Quadratic Gaussian (LQG) controller and Model Predictive con-
troller are employed to improve the frequency regulation in [19, 20]. Fuzzy
Inference System (FIS)-based methods can also offer adaptive control perfor-
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mance, especially when an operation strategy should be applied in varying op-
erating regions. In [21], a hybrid control method based on a Fuzzy-Proportional
Integral Derivative (Fuzzy-PID) control strategy is applied for a pitch system of
an offshoreWTwith a direct-driven PermanentMagnet SynchronousGenerator
(PMSG). In [22], a novel Fuzzy-Proportional-Integral (Fuzzy-PI) pitch control
is proposed to improve the power adjustment, resulting in decreased fatigue
loads of the tower base and the blade root by up to 21.53% in normal turbulent
wind conditions and by up to 18.14% in extremely turbulent wind conditions.
Recently, a fuzzy logic-based linear quadratic regulator (LQRF) control algo-
rithm for a variable-speed variable-pitchWTwas introduced in [23], which can
reduce the tower vibrations by up to 12.50% and improve the power regulation
by 38.93% depending on the operating region. In [24], the fuzzy logic pitch
controller performance is optimized by applying a genetic algorithm.

Although the discussed control approaches can improve WTs performance
in grid balancing services, as evidenced by the literature, most existing meth-
ods rely on constant deloading techniques. However, this approach may not be
optimal in terms of reserved power margin and contribution to the energy mar-
ket. Nevertheless, WT characteristics show that different power margins and
variable deloading approaches enable wind energy conversion systems to par-
ticipate optimally in frequency support. The use of a constant deloading factor
may result in non-optimal operation and infeasibility for varying grid frequency
scenarios. Additionally, when the frequency exceeds 50 Hz, further deloading
is required, which can be disadvantageous for wind farm owners. These limita-
tions of the constant deloading approach can be effectively addressed by vary-
ing the deloading factor based on the grid frequency to optimize the available
power margin. In [25], the advantages, disadvantages, and practical uses of
variable and adaptive frequency regulation methods for WTs are compared and
analyzed. More recent studies, [26,27] attempt to adjust the deloading level of
the WT generations in a real-time framework. However, these adjustments and
adaptive approaches are mainly according to the wind speed, regardless of the
grid frequency behavior, and the activation of power reserve, which depends on
a complex cooperation between renewables, thermal power units, and demand
response. These existing studies also overlook the importance of adaptiveness
of power reserve and adjustment of unit deloading operation in response to grid
frequency stochasticity, which is crucial for improving the flexibility of FCR
provision. Therefore, a lack of emphasis can be observed in the literature re-
garding the adaptive operation ofWTswith varying power reserves for different
frequency scenarios. Such an approach has the potential to optimize deloading
operations and maximize wind power production. To address this issue, our
study proposes a dynamic deloading strategy that operates WTs with real-time
and adaptive margin estimation based on the grid frequency variations across
different wind speed zones. By adopting this approach, we aim to enhance the
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flexibility and efficiency of FCR provision from wind power plants.
This study introduces a novel adaptive deloading scheme that utilizes

an intelligent adaptation approach. It takes into account the variability of
wind, the need for adapting the deloading margin in the partial load region
to wind speed, and proposes an adaptive deloading method that optimizes
the deloading of active power while considering grid frequency stochasticity.
The suggested deloading framework is investigated for fixed and percentage
reserve strategies. In the fixed reserve mode, also known as delta mode, a
fixed amount of reserve is set, while in percentage reserve mode, the reserve
margin corresponds to a percentage of the available wind power [9]. The
reserve margin should be adequately estimated to avoid an over-deloading
performance. The deloading margin can be set to the output level of WTs
in a dynamic way adapting to the time-varying stochastic wind speed and
grid frequency. It prevails over the dynamic trade-off concern of frequency
regulation and output maximization of wind power. To do so, real-time power
system frequency information that shows the balance between generation and
demand should be estimated using a historical time-series data set to reflect
the frequency variations and features, such as Nadir. An accurate system
frequency observation is required to estimate the adequate power reserve,
which will likely be activated in the next window of the prediction horizon. To
address the limitations of the nonlinear deloading approach, we also suggest
an adaptive look-up table that can adjust the wind turbine’s rotational speed
and calculate the reference deloaded power with respect to the estimated wind
speed in partial and full load regions. This study further discusses an end-to-
end operation strategy that enables a wind turbine coupled with a Permanent
Magnet Synchronous Generator (PMSG) to provide FCR by first analyzing the
power system frequency using the Group Method of Data Handling (GMDH)
as a data-driven time-series prediction approach. Secondly, estimating the
power reserve that can be adapted to the grid frequency variations. Thirdly,
estimating the generator torque and pitch control setpoints by considering a
real-time look-up table that adaptively justifies the rotor speed and electrical
power operating curve considering varying wind speeds. Fourthly, employing
advanced control approaches to constantly operate the WT with adaptive
scheduled gains. Since the wind turbine needs to operate under varying
conditions and activate different power reserves, fuzzy-PI pitch and torque
controllers are designed to achieve an adaptive gain scheduling performance.
Finally, comprehensive simulations are presented for different operating
conditions under various scenarios of wind and frequency to evaluate the
performance of the proposed end-to-end operation strategy.

This study is arranged as follows: Section II presents the 5MW WT dy-
namic and baseline control designs. The proposed adaptive reserve strategy
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and deloading methods are discussed in section III. Section IV introduces the
adaptive fuzzy-PI pitch and speed control design. The controller performance
assessment and clarification are given in section V. Discussion and conclusions
are presented in section VI.

4.2 Wind turbine baseline control system
This work studies a 5MW NREL offshore WT model, which has a conven-
tional variable-speed, variable blade-pitch-to-feather configuration. The base-
line controller, consisting of a gain-scheduled PI, has been implemented ac-
cording to the control design section introduced in [28]. The baseline control
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Figure 4.1: Wind turbine operating regions.
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Figure 4.2: Wind turbine baseline control system.
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system relies on a generator-torque controller and a full-span rotor-collective
blade-pitch controller. The two essential control systems are designed to work
independently in all operating regions. As shown in Figure4.1, the operating
mode depends on the wind speed and can be divided into four regions. In the
first two regions where the wind speed is below the rated value, the pitch an-
gle is kept in an optimal position, and the generator-torque controller aims to
maximize power capture. This is known as the Maximum Power Point Track-
ing (MPPT) mode. The third region, the transition zone, can be considered
an extension of the second. In this region, the primary objective is to regulate
generator speed at rated power using a pitch control system. The blade-pitch
controller aims to regulate generator speed in the fourth region, where the wind
speed is above the rated value. In general, the nonlinear relationship between
aerodynamic power 𝑃𝑎 and wind speed 𝑣 can be formulated as follows:

𝑃𝑎 =
1
2
𝜌𝑅2𝜋𝑣3𝐶𝑝 (𝜆, 𝜃) (4.1)

𝜆 =
𝜔𝑟𝑅

𝑣
(4.2)

where 𝐶𝑝 is the power coefficient, 𝜌 is the air density, 𝑅 is the blade length and
𝜃 is the pitch angle of the blade. 𝜆 is the tip-speed ratio, which is a function of
wind and rotational speed, 𝑣, and 𝜔𝑟 , respectively. The mechanical torque can
be formulated as follows:

𝑇𝑚 =
1
2𝜆
𝜌𝑅3𝜋𝑣2𝐶𝑝 (𝜆, 𝜃) (4.3)

The mechanical equation of motion is given by:

𝑇𝑚 − 𝑇𝑔 = 𝐽
d𝜔𝑟
d𝑡
+ 𝐹𝜔𝑟 (4.4)

where, 𝐽 is the moment of inertia, F is the viscous friction coefficient, and 𝑇𝑔
is the electromagnetic torque from the generator. FAST implements Blade
Element Momentum (BEM) and simulates nonlinear aerodynamics. It also
determines structural response to wind-inflow conditions in time, which is
advantageous for developing control designs and analysis [29, 30].
In this article, the direct-drive PMSG is also modeled with an equivalent
scheme in the rotating reference frame, as suggested in [31]. The machine’s
realistic dynamics and losses, including machine inductances, the armature
reaction effect, stator winding copper losses, and iron core losses, are consid-
ered and included in the efficiency curve. The dynamic equivalent model of
the PMSG can be formulated in the q,d rotating reference frame:

𝑉𝑑 = 𝑅𝑠 𝐼𝑑 + 𝐿𝑑
d𝐼𝑑
d𝑡
− 𝑁𝑃𝜔𝑟𝐿𝑞 𝐼𝑞 (4.5)
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𝑉𝑞 = 𝑅𝑠 𝐼𝑞 + 𝐿𝑞
𝑑𝐼𝑞

𝑑𝑡
+ 𝑁𝑃𝜔𝑟 (𝐿𝑑 𝐼𝑑 +Φ𝑚) (4.6)

where, 𝑅𝑠 is the stator-winding resistance, 𝐿𝑑 and 𝐿𝑞 are the d-axis and q-axis
stator-inductances, Φ𝑚 is the flux linkage, 𝑉𝑑 and 𝐼𝑑 are d-axis stator voltage
and current, respectively, 𝑉𝑞 and 𝐼𝑞 are q-axis stator voltage and current, re-
spectively, and 𝑁𝑝 is the pole pair number. The generator torque and electrical
power can be calculated as follows:

𝑇𝑔 =
3
2
𝑁𝑝

[
Φ𝑚𝐼𝑞 + (𝐿𝑑 − 𝐿𝑞)𝐼𝑑 𝐼𝑞

]
(4.7)

𝑃𝑒 =
3
2

[
𝑉𝑑 𝐼𝑑 +𝑉𝑞 𝐼𝑞

]
(4.8)

The generator control uses field orientation, i.e., the torque is controlled by
regulating the q-axis current while maintaining the d-axis current at zero. It is
out of the scope of the current work to use a full-switching model of the power-
electronic converter. Instead, an efficiency curve is obtained from a separate
Simulink model to represent its losses realistically. The Simulink model in-
cludes conduction and switching losses up to the switching level [32]. No ad-
ditional control actions, such as startup sequences, shutdown sequences, and
safety functions, are considered. The nacelle-yaw control system is not in-
cluded in the analysis as it is deemed too slow to contribute to FCR activa-
tion, as this requires sufficiently fast power control. Figure 4.2 shows the base-
line control system that regulates the rotational speed with an outer control
loop based on power and an inner torque control loop. The outer proportional-
integral (PI) controller loop is the (slow) power controller giving the reference
signal to the (fast) inner control loop, regulating the generator current through
control of the active rectifier. A pre-defined look-up table determines the refer-
ence signal of the cascaded control system. The look-up table is created from
the power-speed curves obtained through simulations. The gain-scheduled PI
pitch controller, shown in Figure 4.2, is developed at each operating point to
cope with the nonlinear aerodynamic sensitivity. The blade-pitch sensitivity
is calculated for the 5MW NREL turbine model by performing a linearization
analysis in FAST [33].

In this study, the aerodynamic forces on the blades and the tower are ob-
tained from AeroDyn, based on Automated Dynamic Analysis of Mechanical
Systems (ADAMS), and integrated into FAST. The land-based version of the
NREL 5-MW baseline is employed for offshore floating systems, which in-
corporates several degrees of freedom (DOF), i.e., two flapwise and one edge-
wise bending mode DOF for the blades, one variable generator speed DOF, one
driveshaft torsional DOF, and two fore-aft and two side-to-side bending mode
DOFs for the tower [33].
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4.3 Methodology
The control scheme discussed in this section, shown in Figure 4.3, aims to
enable WTs to operate in FCR provision in scenarios where both upward and
downward products need to be supported simultaneously. Upward reserve
power refers to the additional power needed to be injected into the grid
when the electricity demand exceeds the available supply. This can happen
when there is a sudden increase in demand or a decrease in supply due to
unexpected power plant outages or transmission line faults. On the other
hand, downward reserve power refers to the power that needs to be reduced or
curtailed when the electricity supply exceeds the demand. This can happen
when there is excess electricity production due to favorable weather conditions
or the unexpected absence of large industrial loads. In such cases, the WT
cannot operate in Maximum Power Point Tracking (MPPT) mode and must be
deloaded. However, the control scheme allows the WT to be deloaded only to
the extent necessary to satisfy the predicted request for the expected horizon.
The proposed scheme estimates a varying reserve margin based on the grid
frequency prediction, which provides control setpoints to the pitch and torque
control setpoints. This adaptive control structure can cope with the estimated
reserve and adjust the WT operation accordingly. An adaptive fuzzy gain
scheduling PI control algorithm is suggested to follow the electrical power and
rotational speed in all operating regions. This control algorithm adjusts the
gain of the PI controller based on the operating conditions of the WT. The PI
controller is responsible for regulating the electrical power output of the WT
by adjusting the pitch and torque control systems.

4.3.1 Reserve margin estimation and Grid frequency prediction

To provide FCR, the measured grid frequency is converted into a frequency
response, considering a deadband of 10mHz, through a corresponding change
in active power output Δ𝑃, which is proportional to grid frequency deviations
Δ 𝑓 ( 𝑓ref = 50 𝐻𝑧) with a droop coefficient 𝐷. The promised reserve
contribution must be respected once the wind farm decision-maker selects the
reserve bids based on probable wind speed scenarios and FCR prices in the
day-ahead reserve market. Therefore, the decided droop coefficient D should
be maintained for a 200 mHz symmetric product with a frequency deviation
of 40.8 to 50.2 Hz under any circumstances. However, the grid frequency
distributions for the last five years, shown in Figure 4.4, indicate the grid
frequency varies with less strong deviations (49.94 to 50.06 Hz). Thus, this
study suggests an optimal but still conservative approach that considers an
adequate reserve margin for the potential activation by adapting the reserve
margin 𝛽 to the lowest expected frequency drop 𝑓 𝑝𝑟𝑒𝑒−𝑚𝑖𝑛 for a short-term
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Figure 4.4: Grid frequency distribution and prediction error.

prediction horizon. Then, as indicated in Figure 4.3, the reserve margin will
be decided considering 𝑓 𝑝𝑟𝑒𝑒−𝑚𝑖𝑛 and the prediction error 𝐸𝑝𝑟𝑒.

In this study, a nonlinear regression method is employed as a semi-
supervised deep learning tool that automatically self-organizes the predictive
distribution of variables. GMDH can drive the best polynomial network
structure to accurately reveal the approximated function and predict future
values from historical datasets. The GMDH time series prediction considers a
general relationship between delayed inputs and output variables in the form
of polynomial functions, which is referred to as the Volterra function series or
the Kolmogorov-Gabor polynomial function expressed by:

𝑓 𝑝𝑟𝑒𝑒 = 𝑎0 +
𝑚∑
𝑖=1

𝑎𝑖𝑥𝑖 +
𝑚∑
𝑖=1

𝑚∑
𝑗=1
𝑎𝑖 𝑗𝑥𝑖𝑥 𝑗 +

𝑚∑
𝑖=1

𝑚∑
𝑖=1

𝑚∑
𝑘=1

𝑎𝑖 𝑗𝑘𝑥𝑖𝑥 𝑗𝑥𝑘 (4.9)

where 𝑓 𝑝𝑟𝑒𝑒 is the response variable that indicates grid frequency prediction, x
is the vector of lagged time series to be regressed, m is the number of variables,
and 𝑎0, 𝑎𝑖 , 𝑎𝑖 𝑗 and 𝑎𝑖 𝑗𝑘 are the weighting factors. In this study, the quadratic
K-G polynomial is employed in the form of:

𝑧 = 𝑓 (𝑥𝑖 , 𝑥 𝑗) = 𝑏0 + 𝑏1𝑥𝑖 + 𝑏2𝑥 𝑗 + 𝑏3𝑥 𝑗𝑥𝑖 + 𝑏4𝑥
2
𝑖 + 𝑏5𝑥

2
𝑗 (4.10)

The GMDH structure can be trained to realize the relationship among the
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Output
power (pu)

Rotational
speed (pu)

MPPT

Power regulation

Deloaded %

Right side
deloading

Left side
deloading

Figure 4.5: Rotor speed adjustment for WT deloading operation
(top), Power curve as a function of wind speed (bottom-left), Cal-
culation of power reference and rotational speed for deloaded op-
eration (bottom-right).

lags with the function 𝑓 . The proposed stochastic approximation algorithm is
developed based on a multilayer network using various component subsets of
the polynomial function for each layer. In this algorithm, the output obtained
from the last layer will be set as a new input variable for the next layer. All
possible tries of two independent variables are taken out of a total 𝑛 inputs to
conduct a regression polynomial in the form of (4.10) in the first layer. There-
fore, the minimum activation function is the second-order polynomial, but it
can be gradually increased to higher orders to find an architecture with optimal
complexity. A threshold restricts the number of solutions using the external
criterion to find the fittest structure. The parameters are estimated using the
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least-squares regression method over five years of the historical data set, i.e.,
from January 2017 to October 2022, with a 10-second sample time. The pre-
diction horizon is set to 550s with five delayed inputs. The Mean, Root Mean
Square Error (RMSE),Mean Square Error (MSE), and StandardDeviation (SD)
of the absolute errors are the evaluation metrics used for assessing the results,
which are given in Figure 4.4.
Although WTs usually participate in day-ahead or intra-day markets, where re-
serve provision must be estimated up to 24 hours or 6 hours before activation,
the accurate and reliable prediction of grid frequency variations make it possi-
ble for the studied WT to contribute to the FCR market in real-time. Figure 4.4
demonstrates the distribution of grid frequency variations for 120 mHz over the
last five years, taking into account a 95% confidence interval. This highlights
the potential of the proposed strategy for enabling WTs to improve their FCR
contribution by at least 3.3 times power reserve in a conservative and reliable
manner compared to conventional approaches. This strategy involves utilizing
advanced predictive algorithms that take into account upward and downward
activations in different wind speeds and turbulence intensities. By incorporat-
ing the predictive model into a real-time adaptive look-up table that can actively
adapt the reserve margin by adjusting the electrical power and rotational speed,
WTs can participate more effectively in the regulation market and generate ad-
ditional revenue streams for wind farm operators.

4.3.2 Power reserve strategies

The estimated reserve margin can be achieved through three main deloading
strategies introduced in [34], e.g., derating, fixed power reserve, and percent-
age reserve control modes. The baseline pitch controller is the same for the
three deloading types, whereas the generator-torque controller is slightly dif-
ferent. Figure 4.5 shows a deloaded power curve and the steady-state power
capture of each power reserve strategy. The WT is able to satisfy the sched-
uled FCR at the above-rated wind speed. However, it is required to deload the
wind turbines at below-rate wind speeds by shifting the WT operating point
towards the left or right of the maximum power point [35]. Thus, a reserve
margin will be created by flexibly varying the active power between 𝑃dl and
𝑃MPPT through changing the rotor speed between 𝜔dl and 𝜔MPPT. This study
suggests shifting the operating point to the right to avoid reducing the kinetic
energy, which is beneficial for inertial response [36]. Furthermore, an adaptive
look-up table is incorporated into the supplementary control loop to capture and
reflect the time-varying characteristic of the proposed power reserve. As Fig-
ure 4.3 serves, the deloaded power reference 𝑃𝑑𝑙 for operating under fixed and
percentage reserve modes needs to be estimated by dynamically adjusting the
rotational speed. In this method, the reserve margin 𝛽 represents the portion of
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𝑃rated (deloading percentage) that specifies the upper limit of generated power
in MPPT for the fixed reserve mode. Thus, 𝛽𝑃𝑟𝑎𝑡𝑒𝑑 represents the saving mar-
gin required to be maintained as a constant power reserve. In the percentage
reserve mode, (1 − 𝛽) represents the fraction of the available power that can
be captured in a way that the rest of capacity 𝛽𝑃𝑎𝑣𝑎𝑖𝑙 can be maintained as a
power reserve which is not constant and fixed but proportionally changes with
the available power. Figure 4.6 shows the power output and the estimated 𝛽 in
both fixed and percentage strategies corresponding to the grid frequency profile
by proportionally activatingΔ𝑃 in a turbulent wind speed. In these simulations,
the allowable range of suboptimal rotor speed 𝜔𝑑𝑙 corresponds to 𝑃𝑑𝑙 should
be respected, considering the highest permitted limit of rotational speed (de-
termined by rated rotational speed 𝜔𝑟𝑎𝑡𝑒𝑑). In this case, the suboptimal rotor
speed𝜔𝑑𝑙 is limited between 0.2𝜔𝑟𝑎𝑡𝑒𝑑 and 1.2𝜔𝑟𝑎𝑡𝑒𝑑 for the fixed reserve and
𝜔𝑑𝑙 ≤ 1.2𝜔𝑟𝑎𝑡𝑒𝑑 for percentage reserve mode considering maximum 3 MW
FCR contribution for 550s.

4.3.3 Adaptive fuzzy-PI control system

PI control is still one of the most successful controllers in industrial processes.
However, it typically has poor control performance and stability issues for
nonlinear and time-varying systems [37], especially when control actions
are needed at different operating points with varying operating conditions
and dynamic setpoints. The PI and fuzzy logic algorithm combination offers
a promising alternative solution, in which gain parameters are adapted by
weighting factors calculated through a fuzzy logic controller [38]. This
research studies the performance of fuzzy-PI regulators for pitch and torque
control systems in tracking the power reference providing FCR for varying
reserve margins and deloading strategies. The derivative action is excluded as
it causes an undesired reaction to high-frequency measurement noise.

Fuzzy-PI algorithm

The adaptive gain scheduling fuzzy-PI consists of three components: fuzzifi-
cation, fuzzy inference system, and defuzzification. The fuzzification gener-
ally transforms definite and crisp inputs, errors, and derivative errors, into the
form of a fuzzy set and a membership function. As Figure 4.7.a describes,
any membership corresponds to a fuzzy set through linguistic marks, i.e., NB,
NM, NS, Z, PS, PM, and PB, which stands for negative big, negative medium,
negative small, zero, positive small, positive medium, and positive big, respec-
tively [39, 40]. The FIS contains the control target derived from expert knowl-
edge and fuzzy-based rules in the form of if-then. The transformation of the
control quantity obtained by fuzzy rules into a distinct quantity is called de-
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fuzzification. This can be done by means of techniques such as centroid of
area, a center of gravity, or the maxima method [41].

The control output and the formulation of fuzzy rules highly depend on the
number of fuzzy subsets, such that choosing more fuzzy subsets would improve
the control performance [40]. However, selecting a larger number of fuzzy sets
would complicate the implementation due to the complex rule-making. In this
article, the fuzzy subsets are divided into seven fuzzy subsets based on expe-
rience. The input membership functions for (error, derivative error) and the
outputs are created with the Gaussian distribution. The singleton parameter
𝛼 is created using the triangular-shaped membership functions. The member-
ship functions and the corresponding rule surface as the function of inputs and
outputs are shown in Figure 4.7.b. The corresponding rule surface shows the
combination of all the membership functions and the corresponding rules that
define how inputs are mapped to outputs. The rule surface determines the over-
all behavior of the fuzzy logic system. By defining the membership functions
and fuzzy rules, the system can approximate nonlinear functions and handle
uncertainty and imprecision in the input data. The ruled surface is typically
defined using linguistic variables and fuzzy sets, and it can be visualized using
a 3D surface plot or contour plot. The goal of the system is to map the inputs
to the outputs in a way that best captures the underlying relationships between
the variables. There are two sets of Gaussian membership functions to fuzzy-
PI: the crisp values of the error and the error derivative. The fuzzy rules are
designed to decide the output value for a given case of error and change in error.

Adaptive fuzzy-PI pitch and generator-torque controllers

Typically, the PI gains should be set to enhance the system’s response speed
and improve response accuracy. However, an excessive proportional param-
eter causes overshoot and system instability. Moreover, the model character-
istics change dynamically and drive the system to different operation points.
Therefore, an online adaptive gain scheduling PI is necessary for providing
FCR due to the system’s nonlinearity and the varying operational conditions.
When providing FCR, the adaptive proportional and integral gains should be
significant enough to respond quickly to the changes in the setpoint (when the
error is significant). Then, after the power reference changes in reaction to the
grid frequency (when the steady-state approaches), the proportional gain can
decrease enough to ensure the system stability and avoid excessive overshoots,
which negatively impact the mechanical loads. The following continuous trans-
fer function can describe the PID controller:

𝐺𝑐 (𝑠) = 𝐾𝑝
(
1 + 1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠

)
(4.11)
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where 𝐾𝑝 is a proportional gain. 𝑇𝑖 and 𝑇𝑑 are the integral and derivative time
constants. The PI controller can also be defined in discrete time as follows:

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝐾𝑝Δ𝑒(𝑘) + 𝐾𝑖𝑒(𝑘) (4.12)

The control signals 𝑢(𝑘) is determined by knowing the error 𝑒(𝑘) between
the reference signal and the output of the plant, the change of error that dis-
cretely specified as Δ𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1), and 𝐾𝑝 and 𝐾𝑖 represent the pro-
portional and integral gains respectively. Although the derivative gain is not
considered in this article due to high-frequency measurement noise, it has been
calculated since it is required to obtain the integral gain. As shown in Fig-
ure 4.3, the fuzzy inference system has two inputs (𝑒(𝑘),Δ𝑒(𝑘)) and two out-
puts (𝐾𝑝𝑝,𝐾𝑑𝑝) that are within the predefined ranges [𝐾𝑝,min, 𝐾𝑝,max] and
[𝐾𝑑,min, 𝐾𝑑,max] respectively. The fuzzy outputs are calculated using the nor-
malization method, given in [42], as follows:

𝐾𝑝𝑝 = (𝐾𝑝 − 𝐾𝑝,min)/(𝐾𝑝,max − 𝐾𝑝,min) (4.13)

𝐾𝑑𝑝 = (𝐾𝑑 − 𝐾𝑑,min)/(𝐾𝑑,max − 𝐾𝑑,min) (4.14)

where 𝐾𝑝𝑝 and 𝐾𝑑𝑝 are defined based on the fuzzy rules. These are defined
in the form of IF-THEN, introduced by [42], for gain scheduling, and can be
formulated as follows:

If
𝑒 is 𝐴𝑖
and

Δ𝑒 𝑖𝑠 𝐵𝑖
, Then

𝐾𝑝𝑝 is 𝐶𝑖 ,
𝑘𝑑𝑝 is 𝐷𝑖 ,

and
𝛼 = 𝛼𝑖

(4.15)

where 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 and 𝐷𝑖 are fuzzy sets and 𝛼𝑖 is a constant. The membership
functions (MF) of these fuzzy sets for 𝑒(𝑘) andΔ𝑒(𝑘) are shown in Figure 4.7.a.
Trapezoidal membership functions are used for (NB) and (PB), and Gaussian
membership functions with themeans of (-0.67,-0.33,0,0.33,0.67) and the same
standard deviation of 0.14 are used for (NM, NS, ZO, PS, and PM). The grade
of the membership function 𝜇 for these linguistic levels are defined as follows:


𝜇NB(𝑥) =


0, 𝑥 > −0.7
0.97+𝑥

0.27 , − 0.97 ⩽ 𝑥 ⩽ −0.7
1, 𝑥 < −0.97

𝜇PB(𝑥) =


0, 𝑥 < 0.7
𝑥−0.97

0.27 , 0.7 ⩽ 𝑥 ⩽ 0.97
1, 𝑥 < 0.97

(4.16)
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

𝜇NM(𝑥) = 𝑒−
(𝑥+0.67)2

0.04 , 𝑥 ∈ R

𝜇NS(𝑥) = 𝑒−
(𝑥+0.33)2

0.04 , 𝑥 ∈ R

𝜇ZO(𝑥) = 𝑒−
𝑥2

0.04 , 𝑥 ∈ R

𝜇PS(𝑥) = 𝑒−
(𝑥−0.33)2

0.04 , 𝑥 ∈ R

𝜇PM(𝑥) = 𝑒−
(𝑥−0.67)2

0.04 , 𝑥 ∈ R

(4.17)

The fuzzy sets 𝐶𝑖 , and 𝐷𝑖 can be specified as either Big or Small by combining
two Gaussian membership functions (gauss2mf in Matlab), also known as the
two-sided Gaussian composite membership function, which is shown in Fig-
ure 4.7. The grade of these membership functions are expressed as follows:

𝜇Small(𝑥) = 𝜇Small−Left(𝑥) · 𝜇Small−Right(𝑥)
𝜇Small−Left(𝑥) = 𝑒−

(𝑥+0.195)2
0.135 , 𝑥 ⩽ −0.195

𝜇Small−Right(𝑥) = 1 − 𝑒−
(𝑥−0.195)2

0.135 , 𝑥 ⩽ 0.195

(4.18)

𝜇Big(𝑥) = 𝜇Big−Left(𝑥) · 𝜇Big−Right(𝑥)
𝜇Big−Left(𝑥) = 𝑒−

(𝑥−0.8)2
0.135 , 𝑥 ⩽ 0.8

𝜇Big−Right(𝑥) = 1 − 𝑒−
(𝑥−1.195)2

0.135 , 𝑥 ⩽ 1.195

(4.19)

The proportional, derivative, and integral gains are given in (4.20), (4.21), and
(4.22) and are determined using the method described in [42], which is based
on the Ziegler-Nichols tuning technique.

𝐾𝑝 = 𝐾𝑝𝑝 (𝐾𝑝,max − 𝐾𝑝,min) + 𝐾𝑝,min (4.20)

𝐾𝑑 = 𝐾𝑑𝑝 (𝐾𝑑,max − 𝐾𝑑,min) + 𝐾𝑑,min (4.21)

𝐾𝑖 =
𝐾𝑝

2

𝛼𝐾𝑑

(
𝛼 =

𝑇𝑖
𝑇𝑑

)
(4.22)

Relying on large-scale practices, the ranges of 𝐾𝑝 and 𝐾𝑑 are given as:

𝐾𝑝,min = 0.32𝐾𝑢 , 𝐾𝑝,max = 0.6𝐾𝑢
𝐾𝑑,min = 0.32𝐾𝑢𝑇𝑢 , 𝐾𝑑,max = 0.6𝐾𝑢𝑇𝑢

(4.23)
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where 𝐾𝑢 and 𝑇𝑢 are the gain and the period of oscillation that are measured
when the stability limit is reached under ultimate P-control, and the controller
output would oscillate with a constant amplitude.

The values of 𝐾𝑢 and 𝑇𝑢 are estimated in uniform wind conditions. The
gains for the pitch and generator-torque controller are set as 8.00 and 4.50,
respectively. For the pitch controller, 10.67 and 5.06 are taken as oscillation
periods. Note that 𝛼 is a constant described by the singleton membership func-
tion and has an integer value in the range from 2 to 5 [42]. Figure 4.3 shows the
implementation of the proposed fuzzy controller. Based on the values of the
error and the change in error inputs of the pitch and electrical power, the fuzzy
inference system determines the values of the proportional and integral gains.
The output of the speed controller is the current reference of the generator. The
proposed nonlinear adaptive fuzzy-PI gains change continuously to optimally
track the reference signals, which vary rapidly due to the wind speed and grid
frequency changes.

4.4 Simulation results
4.4.1 Control performance
In this section, the performance of the adaptive power reserve provision is eval-
uated. It also compares the adaptive gain scheduled fuzzy-PI with the baseline
controller under the fixed and percentage reserve mode strategies. The simula-
tions have been carried out in partial and full load regions under turbulent wind
conditions to challenge the robustness of the proposed controller. The wind
speed profile is generated based on the Von Karman model, using the scaling
parameter from the standard IEC 61400-1, edition 3 [43]. Furthermore, a grid
frequency deviation profile provided by the Belgian transmission system oper-
ator (Elia) [44] is used, which activates upward and downward regulations and
lets the WT power reserve be adjusted based on the proposed method in 4.3.

Partial load region

For the simulations in the partial load region, the WT is exposed to an 8 m/s
mean wind speed with 10% Turbulence Intensity (TI). Figure 4.8.a shows the
activation of the power reserve in the partial load region. The proposed con-
troller is able to track the power reference signal under both reserve strategies
and activate FCR with optimal deloading reserve. The simulation time is con-
sidered 550s to better compare the controllers. The Root Mean Square Error
(RMSE) of the electrical power is calculated as a performance criterion. For the
baseline controller under the fixed mode strategy and percentage mode strat-
egy, the RMSE is 50.30 and 32.53 kW, respectively. At the same time, this
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a. Performance of the proposed controller in power reference
tracking and controlling generator torque and rotational speed.

b. Adaptive fuzzy-PI gains (generator torque) versus baseline
gains.

Figure 4.8: Activation of FCR in below-rated wind speed.
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parameter is reduced to 21.08 and 14.18 kW, respectively, by using the fuzzy-
PI controller. As the main control input, the generator torque and the rotational
speed are monitored for all the abovementioned cases. The proposed controller
has a fast and adequate response while giving smoother rotational speed with
small oscillation damping. In the simulation, the estimated power reserve is
adapted to a maximum of 5% of the available wind power for both strategies.
However, due to the inertia of the rotating mass, it can be seen around the time
of 425s that the electrical power for a short duration can react up to 7.5% of the
total power.

Moreover, Figure 4.8.b shows the adaptive proportional and integral gains
of the generator-torque controller delivered by the fuzzy algorithm for a sim-
ulation of 100s (between 400s to 500s) following both reserves strategies and
the turbulent wind condition. Figure 4.8.b depicts that when the grid frequency
changes, the fuzzy proportional and integral gains are increased adaptively to
reach and recompense the new operating point that has been changed due to
the new power reference set point provided by the supplementary control loop.
The proposed controller’s adaptiveness feature would let the generator torque
change adequately and fast without causing the rotor to overspend.

Full load region

For wind speeds above the rated value, a derating control strategy is imple-
mented in which the turbine will produce maximum power up to the desired
power setpoint. In these simulations, an absolute power setpoint (maximum
95% of the rated power) is estimated to have a marginal reserve of a maximum
of 250 kW for tracking the power signal, which proportionally corresponds to
grid frequency changes. When the speed reaches the rated value, both percent-
age and reserve strategies can easily switch to the derating mode due to the
constant rotational speed control. Figure 4.9.a illustrates the WT power ref-
erence tracking performance of the baseline and proposed fuzzy-PI controller
in the above-rated wind speed, responding to the grid frequency profile that is
already shown in Figure 4.6. The RMSE of the baseline controller is 25.93 kW,
and this value is reduced to 20.58 kW when applying adaptive fuzzy-PI, which
confirms that the proposed controller improves the control performance. More-
over, Figure 4.9.b depicts the pitch and generator torque behavior along with
an improvement in rotor speed regulation in the case of employing the adaptive
fuzzy-PI. The calculated RMSEs for the rotational speed under the proposed
and baseline control strategies are 0.49 rpm and 0.8 rpm, respectively.

The aerodynamic power sensitivity to the collective blade pitch angle,
𝛿𝑃/𝛿𝜃, is an aerodynamic property of the rotor that depends on the wind speed,
rotor speed, and blade-pitch angle. This study calculates pitch sensitivity based
on a linearization analysis in FAST with AeroDyn for the NREL offshore
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a. Power reference tracking of the proposed control system.

b. Performance of the pitch and generator torque and rotational
speed of the proposed control system.

Figure 4.9: Activation of FCR in above-rated wind speed.
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a. The pitch control system, adaptive fuzzy-PI gains versus base-
line gains.

b. Generator torque, adaptive fuzzy-PI gains versus baseline
gains.

Figure 4.10: Baseline and fuzzy controller gains in above-rated
wind speed.
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5MW WT baseline. The gain schedule PI as a baseline pitch controller is
developed as suggested in [28]. The drivetrain gain and negative damping
from the generator-torque controller in WT pitch control systems have been
shown to have relatively small effects on the overall system behavior compared
to other factors, such as wind speed and blade pitch angle sensitivity [45].
This is due to the fact that the drivetrain gain represents a minor source of
system dynamics, and the negative damping term is typically small and can be
compensated by the adaptiveness that the generator-torque PI controller can
offer. Therefore, the PI gains are calculated by knowing the recommended
response characteristics along with the gain-correction factor. However, in
the proposed fuzzy approach, no pitch sensitivity is included. Instead, an
improved adaptation of control gains is offered that only considers the speed
tracking error and the rate of this error. On the other hand, the torque control
system will be involved in FCR provision in all operating regions.

The power reference in the above-rated wind speed will be calculated
through the supplementary control loop given in section 4.3. In the control
scheme discussed, the de-loaded power reference 𝑃𝑑𝑙 is set to a fraction of
the nominal power at rated wind speed 𝑃𝑟𝑎𝑡𝑒𝑑 , where the fraction 𝛽 can vary
between 0 and 1. In fact, the de-loaded power reference should be set to a
maximum derated margin, which is determined based on a prediction of the
grid frequency. This ensures that the power output of the wind turbine remains
within acceptable limits while also maximizing the energy yield from the
wind. The value of 𝛽 determines the amount of power reduction required to
provide the necessary downward reserve power while still maintaining the
stability of the WT. In the simulations performed in this study, the maximum
value of 𝛽 considered was 0.05. This corresponds to a power reduction of 5%
of the nominal power at rated wind speed. The value of 𝛽 was chosen based
on the estimated maximum expected deviation in the grid frequency profile,
which was Δ 𝑓𝑚𝑎𝑥 = 43mHz in this study. The value of 𝛽 can be adjusted
for the specific amount of the FCR provision, which should be decided in the
reserve market considering the electricity and reserve prices. By adjusting 𝛽,
the WT can be deloaded to provide the necessary downward reserve power
while maintaining the electrical grid’s stability.

Figure 4.10.a shows the PI gains of the pitch of the fuzzy and baseline de-
signs in responding to the grid frequency changes. The pitch controller’s pro-
portional and integral gains in the fuzzy approach are changing rapidly to offer
a greater controlling and damping effect. Although no gain correction factor
is considered based on the pitch control sensitivity, the proposed controller is
able to regulate the rotational speed in turbulent wind conditions (wind speed
varies between 12m/s to 18 m/s) by employing the fuzzy adaptive gains.

Figure 4.10.b shows the proportional and integral gains of the torque con-
troller in the fuzzy approach, comparing the fixed gains in the baseline ap-
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proach, adaptively reacting to the varying electrical power setpoint, which re-
sponds to the grid frequency changes for providing FCR. When the power set-
point changes at the transient moment, the value of the proportional gain should
become reasonably significant, and the integral gain should be kept as small as
possible to prevent an overshoot. When the steady-state approaches, the value
of the proportional gain should decrease, and the value of the integral gain
should increase to prevent further overshoots and oscillations. These condi-
tions are well consolidated in the proposed fuzzy-based approach. Based on
the simulation results that are reflected in Figures 4.9 and 4.10, the fuzzy-PI
design has demonstrated better tracking and control performance compared to
the baseline PI scheme.

4.4.2 Analysis of mechanical load

Partial load region

This subsection aims to investigate the proposed approach’s impact on the
WT’s mechanical load under different power reserve strategies and control
systems. The analysis considers the root mean square (RMS) values during
the final 400s of the simulation, excluding the initial 150s, to account for any
startup conditions that may affect the results. The studied parameters related to
the structural behavior of WT involve the blade root out-of-plane bending mo-
ment, tower base fore-aft bending moment, and tower base side-to-side bend-
ing moment, which are all examples of the bending moments that wind turbine
components can experience, which are the key metrics determining structural
loading. The blade flapwise and edgewise bending moments are specific to the
behavior of the wind turbine blades. The blade root pitching moment relates to
the twisting or rotation of the blade around its longitudinal axis.

Figure 4.11.a displays the blade root out-of-plane, tower base fore-aft, and
side-to-side bending moments for normal operation at MPPT mode and two
reserve strategies. As expected, the cyclic loading significantly increases the
amplitude of the blade root out-of-plane and tower base fore-aft bending mo-
ments, which will further escalate as the rotor speed increases. However, the
amplitude of the tower base side-to-side bending moments decreases, as this
bending moment depends on the torque induced by the roll motions at the top
of the tower. In both strategies, the thrust force responsible for the fore-aft tower
base bending moment increases while the torque moment decreases. This anal-
ysis helps explain the excessive mechanical loads observed in the fixed reserve
strategy, which maintains a higher reserve than the percentage reserve strat-
egy.
Figure 4.11.b presents the root mean square (RMS) values of other loading

parameters, including blade root pitching, flapwise, and edgewise bending mo-
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a. Time-series of mechanical loads in partial load region.

b. WT mechanical loads for FCR provision in partial load region.
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c. WT mechanical loads for FCR provision in full load region.

Figure 4.11: Mechanical load analysis

ments, for different control strategies. The monitoring is performed at turbulent
wind speeds with a fixed pitch angle of zero degrees. The results indicate that
the proposed control strategies have a negligible effect on the blade edgewise
moment (around 0.005%). However, it is observed that the fixed reserve strat-
egy causes an increase in blade root pitching and flapwise moments by 14% and
5%, respectively, compared to the percentage reserve mode. Although both re-
serve strategies increase most of the affected mechanical loading parameters,
the adaptive fuzzy-PI control scheme applied at below-rated wind speeds does
not add extra forces to the blade and tower base. The proposed control scheme
slightly reduces the blade out-of-plane pitching and flapwise bending moments
by around 5%, owing to the smooth regulation of the rotor speed and the adap-
tive response of the generator torque to the varying power setpoint. The adap-
tive fuzzy-PI controller outperforms the baseline PI controller in regulating the
electrical power and achieving the least RMS of the mechanical loads in the
below-rated wind speed. Overall, the fuzzy-PI controller has superiority over
the baseline PI controller in adjusting the electrical power and achieving the
least RMS of the mechanical loads in the below-rated wind speed.

Full load region

As shown in Figure 4.9.b, applying the fuzzy-PI can effectively decrease the
frequent action of the pitch actuator while providing improved power reference
tracking and better rotor speed regulation compared to the baseline method.
The lowered pitch servos and blade actions result in reduced mechanical loads.
Figure 4.11.c shows that the proposed method significantly reduced the out-of-
plane and pitching moment, two critical load parameters that can cause fatigue
damage to the blades. In nominal operation, the fuzzy-PI control strategy re-
duced the blade root edgewise moment by 7.9% and the pitching moment by
39% compared to the baseline method. In derated operation, the fuzzy-PI con-
trol strategy reduced the blade root edgewise and flapwise moments by 3%
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and 3.2%, respectively, compared to the baseline method. Additionally, the
proposed method reduces the tower fore-aft and side-to-side bending moments
by 5% and 8%, respectively, more than the baseline approach. The proposed
method causes torque and pitch controllers to cooperate effectively in providing
active power regulation at the above-rated wind speed. Active power regulation
plays a vital role in preventing mechanical loads from surpassing design limits,
which can lead to turbine damage. By effectively managing these loads, we can
significantly extend the remaining useful life of the wind turbine. The fuzzy-PI
control strategy regulated the wind turbine’s power output while keeping the
mechanical loads within safe limits.

4.5 Conclusions

This article proposes an adaptive operational strategy for a WT to provide
Frequency Containment Reserve (FCR) considering grid frequency and wind
speed stochastic behavior. An adaptive reserve margin is estimated based on
a short-term prediction of the grid frequency. To track the power reference
signal with a varying reserve margin, a real-time look-up table is employed
in an FCR supplementary control loop to adjust the reserve margin and the
control setpoints adaptively. The performance of the suggested framework is
investigated for two power reserve methods, i.e., fixed reserve and percentage
reserve strategies. This study also addresses the gain scheduled fuzzy-PI de-
sign for adaptive and reliable control of a large offshore operation (partial and
full load regions) providing FCR in turbulent winds. The proposed controller
is applied to the FAST simulator, which offers detailed nonlinear aero-hydro-
servo-elastic simulation in the time domain for analyzing the effectiveness of
pitch and torque control systems. The suggested adaptive reserve strategy per-
forms well in terms of optimal and adequate response to the grid frequency
changes. Moreover, the application of fuzzy-PI pitch and torque controllers for
the proposed control structure is able to smoothen out electrical power fluctu-
ations in an active power control mode and improve robust regulation of gen-
erator speed. No adverse impacts were found on mechanical loads that might
be increased in particular conditions when providing the power reserve for the
active power regulation. The simulation results indicate the superior perfor-
mance of the adaptive fuzzy-PI in all operating regions and for both reserve
modes. Besides the effectiveness and compatibility of the fuzzy-PI in terms
of power reference tracking, it results in an optimal control action of pitch and
torque in the presence of turbulent wind speed in below and above-rated wind
conditions without risking the control system’s stability. A general conclusion
of this study suggests that the proposed operational strategy using adaptive gain
scheduling fuzzy-PI is applicable and beneficial for FCR provision due to its in-
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expensive and computationally reasonable cost and capability to cover a broad
range of operating conditions. Although providing power reserve increases
some mechanical loads, this could be compensated by the adaptive and smooth
performance of the proposed scheme, especially at above-rated wind speed and
for fixed power reserve mode in below-rated wind speed. The proposed op-
erational strategy can efficiently be integrated into a WT’s existing pitch and
torque control systems, enabling them to provide FCR with optimal deloading
margins and adaptively operate under different power reserve strategies.
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Chapter 5

Hybrid Physics-based
Data-driven Modeling for
Wind Turbine Health
Monitoring

As discussed in previous chapters, data-driven methodologies can help in the
modeling and control to optimize the operation of wind farms (Chapter 2) and
wind turbines (Chapter 3 and 4) that deliver FCR. This chapter focuses on wind
turbine health monitoring. As mentioned in Sections 1.4.4 and 1.5.3, assess-
ing the overall condition of wind turbines (WTs) in operation poses a signifi-
cant challenge due to their complex nature, which becomes even more intricate
when WTs are simultaneously providing ancillary services and responding to
grid requirements, especially under curtailment mode. Traditionally, multiple
models are required to effectively evaluate the health condition of WTs, mak-
ing the process cumbersome and impractical, particularly for large-scale wind
farms. Moreover, conventional physics-based models often struggle to capture
the full complexity of turbulent wind flows and the intricate aerodynamics of
wind turbine blades under varying operating conditions. This is where hybrid
physics-based data-driven methods come into play. They combine physics-
based models with data-driven approaches, such as deep learning, to use the
strengths of both approaches, improving the accuracy and reliability of predic-
tive capabilities and ultimately leading to more efficient and cost-effective wind
turbine condition monitoring purposes.

To address these challenges, this chapter proposes a novel hybrid physics-
based deep learning framework that accurately approximates the time-varying
correlation between control sequences and system response, capturing the aero-
dynamic nonlinearity of the NREL 5MW offshore WT. This framework intro-
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duces a layer of novelty by presenting a computationally efficient weakly su-
pervised approach that utilizes the hybrid structure to detect degradations and
anomalies, specifically considering curtailment operation.

To detect anomalies and degradation, a support vector machine is employed
to classify extracted electrical power and rotational speed features in both the
time and frequency domains. A wide range of anomalies and power depre-
dations, such as PMSG abnormalities, pitch control failure, or yaw misalign-
ment, will be evident in these two parameters. The proposed approach also in-
corporates an iterative self-learning framework that updates the selected clas-
sifier’s hyperparameters dynamically during active operations, enabling it to
learn from new and previously unseen anomalies. This adaptive learning pro-
cess enhances the monitoring capabilities and ensures continuous improvement
in anomaly detection.

Furthermore, the proposed method accounts for uncertainties in the sys-
tem, such as wind stochasticity and power curve variations, and accommodates
different sparsity levels in the datasets. This flexibility allows the approach to
handle diverse operational scenarios and ensures its applicability in real-world
wind farm conditions.

By employing this comprehensive approach, the proposed method signif-
icantly improves health monitoring performance, leading to a more efficient
and accurate assessment of the overall condition of WTs. This is necessary for
wind farm supervisory control level and grid integration improvement. The
enhanced monitoring capabilities enable better decision-making at the super-
visory control level, facilitating effective maintenance scheduling, optimizing
power generation, and ensuring reliable grid integration. Ultimately, the pro-
posed method contributes to the overall operational excellence of wind farms
by improving health monitoring and enhancing the integration of WTs with the
grid.

The contents of this chapter is currently under review [1].
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Abstract Assessing the overall condition of wind turbines in operation is chal-
lenging due to their intricate nature. This becomes even more complicated
when wind turbines provide ancillary services and respond to grid require-
ments under curtailment mode. Multiple models are required to effectively
evaluate the wind turbines’ healthy condition, which can be unmanageable
and impractical, particularly for large-scale wind farms. This article pro-
poses a novel hybrid physics-based deep learning framework to accurately ap-
proximate the time-varying correlation between control sequences and system
response, reflecting the aerodynamic nonlinearity of the 5-megawatt offshore
wind turbine model, designed and tested by the National Renewable Energy
Laboratory (NREL). Another layer of this study’s novelty relies on proposing a
computationally efficient weakly supervised approach that employs the hybrid
structure to detect degradations and anomalies considering curtailment oper-
ation. A self-learning classification approach is employed to iteratively update
the best-tuned classifier, dynamically learning unforeseen abnormalities from
brand-new anomalies during active operations. The proposed method deals
with uncertainties in the system, such as wind stochasticity and power curve
variations, including different sparsity levels in the datasets. The results of the
proposed approach show promise in improving health monitoring performance,
leading to a more efficient and accurate assessment of the overall condition of
wind turbines.

5.1 Introduction

the growing number of wind energy conversion systems, ensuring reliable oper-
ation that considers grid balancing provision through ancillary services while
lowering maintenance costs and reducing downtime is necessary. However,
wind turbines (WTs) are complicated systems containing multiple subsystems.
Anomalies and faults can occur due to various factors, leading to failure. There-
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fore, it is crucial to have a condition monitoring system (CMS) that can detect
these issues early on to improve the system’s reliability and to lower the lev-
elized cost Of energy (LCOE) [2].

The fast development of big data techniques plays an evolutionary role in
WT Health monitoring and predictive maintenance strategies. In recent years,
there has been a significant amount of research interest in monitoring the condi-
tions ofWTs using hybridmodeling, measured data, and deep learningmethods
to carry out a wide range of tasks, from detectingWT anomalies [2,3], gearbox
fault diagnosis [4–8], blade icing detection [9,10], and predicting failures [11]
to estimating components remaining useful life [12–15].

Among the latest studies, some efforts aim to extract high-level features
from data, obviating the need for specialized domain knowledge. In [16], a
deep learning classifier for WT gearboxes employs a stacked auto-encoder.
Similarly, [17] uses an adaptive algorithm to capture evolving sensor weights
for WT health assessment. In [18], an interactive spatiotemporal model ex-
tracts features, while [19] introduces an adaptive gated attention mechanism
for fault feature extraction. Nevertheless, emphasis is placed on achieving ac-
curate modeling, given the intricate and aerodynamic nature of WT data con-
nections to unveil hidden nonlinear patterns, ensuring an overall recognition
of rapidly altering operating conditions, i.e., maximum power point tracking
(MPPT) mode, power regulation and the transitions zone, and improving the
overall effectiveness of WT condition monitoring, fault diagnosis, and lifetime
prognosis [20].

Data-driven methods and sensor data analytics are powerful tools to mirror
and predict the system performance [21]. A machine learning-based surrogate
structure as a virtual model and a proxy to the actual high-fidelity model of
an existing system can emulate the behavior of a physical system depending
on the entity’s design and operation. [22] proposes using a surrogate model to
calculate extreme WT tower loads using various signals and a suitable sim-
ulation tool. Also, surrogate models based on polynomial chaos expansion
(PCE) and Kriging are suggested in [23] to approximate WT fatigue loads.
Long short-term memory (LSTM) is a recurrent neural network (RNN) that is
often used in wind turbine surrogate modeling due to its ability to capture tem-
poral dependencies and sequential patterns in time series data, which is com-
mon in wind turbine operational data [24, 25]. Another robust and effective
method to estimate the nonlinear behavior of dynamical operations is the adap-
tive neuro-fuzzy inference system (ANFIS), which enables expressing uncer-
tain circumstances in the form of rules by using the (if-then) decision-making
mechanism [26]. ANFIS and fuzzy logic approaches can show superior perfor-
mance, short execution time, and accuracy, especially in WT applications that
possess stochastic aerodynamic characteristics [27, 28]. The introduction of
convolutional neural network (CNN) has broadened the possibilities for time
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series prediction methods, and made them no longer limited to RNN. CNNs
offer the advantage of parallel processing and the ability to expand their re-
ceptive fields. This capability allows CNNs to access a more comprehensive
historical context, potentially mitigating issues associated with long-term de-
pendencies. Temporal convolutional network (TCN) represents an advanced
refinement of the CNN architecture. It does so by employing dilated causal
convolutions to uncover important historical information [29]. Interestingly,
enlarging the receptive field using dilated causal convolutions results in only
a minor increase in the network’s layer count and parameter complexity. As
a result, TCN excels in the domain of time series prediction, surpassing the
predictive capabilities of standard CNNs [29]. Promising outcomes of TCN
in predictive tasks, such predicting RUL of rotating machinery and forecasting
wind speed intervals for wind turbines are discussed in [30, 31]. The Trans-
former model is another deep learning architecture, which recently has become
very popular due to its effectiveness in capturing long-range dependencies in se-
quences [32,33]. The attention-based Transformermodel addresses some of the
limitations of recurrent and convolutional neural networks in handling sequen-
tial data and is recently developed for remaining useful life (RUL) estimation
approaches [34]. However, despite the mentioned benefits of Transformers,
their adoption for real-time inference is hindered by demanding computational
requirements [35]. This complexity in deployment poses a notable challenge
for practical applications where data might be limited.

Nevertheless, applying pure data-driven techniques to WT modeling faces
significant limitations, emerging from insufficient data quality and quantity of
vital parameters like wind and rotor speed, power, and control performance
metrics [36]. By juxtaposing power predictions with real-time data and com-
bining physics-based and data-driven methods, a comprehensive and accurate
representation of the turbine’s behavior can result in successful flag-up devi-
ations, particularly in scenarios involving stochastic processes or varying grid
conditions. However, the current hybrid methods are also often focused on lim-
ited parameters and elements, solely on a few key components such as the gear-
box, the generator, blade bearings, or power quality [37]. Furthermore, power
prediction within WTs plays a pivotal role in wind energy management and
power forecasting. When combined with data analysis and monitoring meth-
ods, this predictive capacity not only aids energy generation management and
grid integration but also facilitates the detection and diagnosis of significant
powertrain degradation and failures [37]. On the other hand, accurate mod-
eling and a standalone condition monitoring system (CMS) for the entire WT
can be costly, requiring extra investments [2]. While significant progress has
been made through these techniques, a comprehensive evaluation of the entire
WT is often challenging to attain [2, 38]. The issue becomes even more com-
plex when the selected monitoring indicator fails to detect the fault signatures,
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as these could be masked by the condition parameters of another component or
different operating policies, such as power degradation related to the Frequency
Containment Reserve (FCR) provision [39], which has not been taken into con-
sideration in the previous studies. Multiple models have been produced due to
various studies attempting to tackle the issue by combining various methods
that increase the system’s complexities. However, they are found to be less ef-
ficient and more costly to manage, particularly in large floating offshore wind
farms [40]. This underscores the need for an integrated approach that com-
prehensively addresses the intricacies and challenges of wind turbine health
assessment and condition monitoring.

This study addresses three key challenges that hinder a comprehensive eval-
uation of wind turbine performance. Firstly, existing methods focusing on sin-
gle turbine components fail to provide an overall performance assessment, dis-
regarding complex interdependencies within the system [37]. Secondly, man-
aging multiple models for different aspects of performance is often inefficient
and computationally expensive [2]. Thirdly, the impact of wind turbine cur-
tailment operations on system health for grid balancing purposes is often over-
looked [41]. To bridge these gaps, we propose a hybrid framework that predicts
theWT overall performance by coupling physical equations representing the es-
timation of controlled parameters responding to various operating conditions
and a deep learning surrogate model predicting WT aerodynamic behavior, al-
lowing a more accurate reflection of healthy behavior. We investigated the
prediction capability of three different deep learning approaches suggested in
the literature, i.e., ANFIS, LSTM, and TCN, ensuring the accuracy and compu-
tational efficiency of the surrogate model. This study particularly addresses the
third gap by explicitly considering curtailment-related degradation that can be
falsely detected as performance degradation or any other anomalies. Addition-
ally, we employed a weakly supervised approach using limited labeled faulty
data to address the challenges posed by supervised and unsupervised methods
and their requirements of extensive labeled data, which are not always practi-
cally available [36, 42].
The key contributions of this article can be outlined as follows:

• A hybrid framework is proposed that accurately predicts the WT’s over-
all healthy performance by approximating the electrical power and rota-
tional speed, not only considering the stochastic nature of wind speed but
also complex correlations between control sequences of pitch-generator
torque and system response in turbulent wind. These parameters are
physically described and integrated into a deep learning surrogate model
to effectively capture the system’s nonlinearities across various stochas-
tic conditions and operational modes. Employing the proposed hybrid
structure facilitates anomaly detection by distinguishing between normal



i
i

i
i

i
i

i
i

5.2 Hybrid Physics-based deep learning model 171

and abnormal states, indicating deviations (residuals).

• A self-learned approach with an iterative framework is investigated that
improves the classifier’s performance by dynamically updating newly la-
beled anomalies from former successful classifications. Support Vector
Machines (SVMs) are employed for classifying the faultiness and degra-
dation, incorporating coherent features that can be extracted from the
plant’s main observables, i.e., electrical power, and rotational speed, in
time and frequency domains for seamless integration into the system’s
condition indicators.

• This study also considers a wide range of anomalies and degradation
scenarios, including degradation due to curtailment operations provid-
ing FCR, blade pitch control failure, yaw misalignment, and Permanent
Magnet Synchronous Generator (PMSG) abnormalities. The suggested
approach addresses the intricacies and inter-dependencies present in WT
performance under varying grid requirements and operating conditions.
The methodology’s validation was performed on a realistic 5MW off-
shore floating wind turbine using the NREL FAST software. This simu-
lation integrates detailed models of the wind turbine’s nonlinear aerody-
namics, providing a realistic environment for comprehensive assessment.

This article is organized as follows: Section II discusses the hybrid physics-
based deep learning structure. Section III describes the proposed condition
monitoring approach. The performance assessment, data, simulations, and re-
sults are presented in Section IV. Finally, in Section V, the findings are dis-
cussed, and conclusions are drawn.

5.2 Hybrid Physics-based deep learning model

5.2.1 Underlying WT physical system

This study employs a 5MW offshore WT with variable blade-pitch-to-feather
configuration and an operational control approach based on power-production
regulation using pitch and torque control systems. To accurately model the be-
havior of the WT, each subsystem is described and modeled separately. This
involves developing a detailed model of the aerodynamics, control system,
and electrical characteristics of the Permanent Magnet Synchronous Generator
(PMSG). These models are then integrated into a closed-loop system to study
WT’s dynamic behavior in various operating conditions.
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Dynamic model

To investigate the dynamic behavior of wind turbines, the study employs Turb-
Sim to generate time series data for the three Cartesian wind components within
a dimensional grid. This data is generated based on statistical models, effec-
tively simulating the full-field wind speed distribution. Subsequently, the gen-
erated wind data undergoes analysis to assess its spectral and coherence prop-
erties in the frequency domain. By applying an inverse Fourier transform, the
data is transformed into wind speed time series, a crucial preparatory step for
its integration into the time domain-oriented FAST simulation tool. This com-
prehensive approach ensures the faithful representation of wind conditions, ul-
timately facilitating a robust exploration of wind turbine dynamics and perfor-
mance [43,44]. The wind turbine captures a total amount of mechanical power
𝑃𝑚, and the mechanical torque 𝑇𝑚 of the wind turbine can be described using
the following relationships:

𝑃𝑚 = 𝐴𝑣3𝐶𝑝 (𝜆, 𝜃), 𝐴 =
1
2
𝜌𝜋𝑅2, (5.1)

𝑇𝑚 = 𝐴𝑣3𝐶𝑝 (𝜆, 𝜃) ·
1
𝜔𝑟
, (5.2)

where 𝐶𝑝 represents the power coefficient, 𝜌 is the air density, 𝑅 denotes the
blade length and 𝜃 is the pitch angle. The tip-speed ratio 𝜆 = 𝜔𝑟𝑅/ 𝑣 is a func-
tion of wind 𝑣 and rotational speed 𝜔𝑟 . FAST implements the Blade Element
Momentum (BEM) theory and simulates the nonlinear equations of motion. It
also determines the WT’s aerodynamic and structural response to wind-inflow
conditions in time, which is advantageous for developing control designs and
analysis [45].

Generator

The dynamic equivalent model of the PMSG can be formulated in the q,d ro-
tating reference frame:

𝑉𝑑 = 𝑅𝑠 𝐼𝑑 + 𝐿𝑑
𝑑𝐼𝑑
𝑑𝑡
− 𝑁𝑝𝜔𝑟𝐿𝑞 𝐼𝑞, (5.3)

𝑉𝑞 = 𝑅𝑠 𝐼𝑞 + 𝐿𝑞
𝑑𝐼𝑞

𝑑𝑡
+ 𝑁𝑝𝜔𝑟 (𝐿𝑑 𝐼𝑑 +Φ𝑚), (5.4)

where 𝑅𝑠 is the stator-winding resistance, 𝐿𝑑 and 𝐿𝑞 are the d-axis and q-axis
stator-inductances and Φ𝑚 is the flux linkage. 𝑉𝑑 and 𝐼𝑑 are the d-axis stator
voltage and current. 𝑉𝑞 and 𝐼𝑞 are the q-axis stator voltage and current. 𝑁𝑝
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Figure 5.1: Nonlinear mapping between wind speed, WT genera-
tor torque, blade pitch angle, and rotational speed.

is the number of pole pairs. The generator torque and electrical power can be
formulated as follows:

𝑇𝑔 =
3
2
𝑁𝑃

(
Φ𝑚𝐼𝑞 + (𝐿𝑑 − 𝐿𝑞)𝐼𝑑 𝐼𝑞

)
, (5.5)

𝑃𝑒 =
3
2
[𝑉𝑑 𝐼𝑑 +𝑉𝑠𝑞 𝐼𝑠𝑞] . (5.6)

The wind turbine system’s equation of mechanical motion is formulated as fol-
lows:

𝑇𝑚 − 𝑇𝑔 = 𝐽 ·
𝑑𝜔𝑟
𝑑𝑡
+ 𝐵 𝑓 · 𝜔𝑟 , (5.7)

where, 𝐽 represents the overall moment of inertia, while 𝐵 𝑓 denotes the co-
efficient associated with viscous friction. The machine’s realistic dynamics
and losses, including machine inductances, the armature reaction effect, stator
winding copper losses, and iron core losses, are considered and included in the
efficiency curve as proposed in [46].

Control system and FCR provision

The WT control design includes two main controllers: a generator-torque con-
troller and a full-span rotor-collective blade-pitch controller. These controllers
operate across all operational regions. In wind speeds below the rated level,
the pitch angle is set at zero degrees, and the torque controller optimally max-
imizes wind power extraction by keeping 𝜆 and consequently 𝐶𝑝 at the opti-
mal level, which is 𝐶𝑜𝑝𝑡𝑝 = 0.482 and 𝜆𝑜𝑝𝑡 = 7.55 respectively. Conversely,
for wind speeds above the rated level, the pitch controller maintains rotational
speed using a gain-scheduled PI controller. In this operating region, there is no
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Figure 5.2: a)WT optimal power coefficient for normal operation.
b) WT power modification for curtailed operation.

rotor acceleration by applying a rated generator torque 𝑇𝑔−𝑒𝑞𝑢 that cancels the
aerodynamic torques at equilibrium. Figure 5.1 illustrates the nonlinear rela-
tionships among wind speed, generator torque, blade pitch angle, and rotational
speed. The pitch controller adapts to the nonlinear aerodynamic characteristics
at different operating points, as determined through linearization analysis in
FAST. The control system includes a transition zone between partial and full
load to ensure a smooth transition between maximum power point tracking and
power regulation. The pitch angle 𝜃 can be approximated considering the pitch
control proportional 𝐾𝑝 and integral 𝐾𝑖 , to keep the rotational speed at the rated
value 𝜔ref:

𝜃 ≈ 𝜃ref = 𝐾𝑝𝛿𝜔𝑟 + 𝐾𝑖
∫ 𝑡

0
𝛿𝜔𝑟𝑑𝑡, (5.8)

𝛿𝜔𝑟 = 𝜔ref − 𝜔𝑟 , (5.9)

where,𝜔ref is the rated rotational speed of 12.1 rpm for 5MWoffshoreWT. The
proportional𝐾𝑝 and integral𝐾𝑖 scheduled gains that are calculated bymultiply-
ing the gain correction factor 𝐺𝐾 (𝛽) = 1

1+𝛽/𝛽𝐾 to constant values, considering
the aerodynamic pitch sensitivity of wind turbine 𝛿𝑃/𝛿𝛽 [45]. Moreover, the
control system also governs the yaw angle during normal operation, ensuring
the nacelle remains aligned with the wind direction. This dynamic adjustment
minimizes mechanical stress, enhances energy output, and mitigates potential
damage from extreme wind conditions. In curtailment mode, wind turbines are
intentionally operated at less than their maximum power output capacity. In
curtailment mode, a power reserve is needed to let the WT respond to grid fre-
quency variations with primary control architecture [47]. This means that the
turbine’s blades and generator torque are adjusted to capture less energy from



i
i

i
i

i
i

i
i

5.2 Hybrid Physics-based deep learning model 175

the wind than they would at their optimal operating conditions. The power co-
efficient in curtailment mode 𝐶cur

𝑝 would generally be lower than the optimal
power coefficient 𝐶opt

𝑝 in full-healthy operating mode by applying a deloaded
factor 𝛽 (in percentage) that determinesWT contribution in FCRmarket, which
can be formulated as follows:

𝐶cur
𝑝 = 𝛽 · 𝐶opt

𝑃 . (5.10)

Fig.5.2a shows wind turbine optimal power coefficient in relationship with tip
speed ratio and blade pitch angle. To let the WT respond to grid frequency
variations, a supplementary FCR control loop is used, and the rotor speed-
power lookup table is modified by shifting the WT’s operating point to the
right side of the Maximum Power Point Tracking (MPPT) curve [48]. The
curtailed operation lets theWT to regulate the deloaded power 𝑃dl, considering
the adjustment of rated rotor speed in deloading mode (𝛿𝜔dl

𝑟 = 𝛼𝜔ref − 𝜔𝑟 ),
applying the deloaded generator torque 𝑇dl

𝑔−𝑒𝑞𝑢. Figure 5.2b shows WT power
modification for curtailed operation as discussed in [47]. TheWT overspeeding
factor 𝛼 ensures sufficient reserve at sub-optimal performance while enabling
the WT to respond to grid frequency variations Δ 𝑓 proportionally, even when
wind speed is at the below-rated value.

5.2.2 Hybrid framework
Recently, a robust baseline approach has been suggested in literature that lever-
ages a predictive model and estimates a healthy power curve, achieving a nor-
mal behavior model (NBM) based on measured wind speeds for assessing the
overall health condition of the entire WT [2]. However, several abnormalities
can induce similar degradation impacts on the power curve while impacting ro-
tational speed differently. For instance, increasing and decreasing rotor speed
above or below rated wind speed has the same electrical power degradation
effect. Therefore, yaw misalignment in below-rated wind conditions can be
misinterpreted as curtailment degradation if we only consider the power cure
prediction. However, observing the rotational speed more accurately indicates
the related deviation. This is mainly because in yaw misalignment the rotor
speed drops below the MPPT curve, while it will be moved to above the MPPT
curve for curtailment reasons to avoid losing kinetic energy that can be used for
supporting inertial response [47].

On the other hand, PMSG abnormalities are more evident by observing
the electrical power, and they have less impact on the WT’s rotational speed.
Therefore, in the proposed hybrid framework, we suggest closely monitoring
both the WT power and rotational speed to evaluate the overall performance of
the WT in different operating conditions. Additionally, the proposed architec-
ture aims to approximate the time-varying correlation between control inputs
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and system response while ensuring the process dynamics are enforced within
the network. The baseline approach only considers wind speed as the main in-
dependent input. However, the mentioned controlled parameters can directly
impact the aerodynamic nonlinearity of the system. They can be estimated by
governing physical equations that provide the pitch and generator torque sig-
nals based on the central independent input, wind speed, and rotational speed as
a feedback signal. The mathematical equations are adjusted to respond to wind
speed variations, and the active power, which should be decided according to
the power grid fluctuations at the supplementary FCR control loop. Then, a
nonlinear mapping of multiple inputs, i.e., wind speed, blade pitch angle, and
generator torque, into multiple outputs, i.e., rotor speed and mechanical power,
is carried out by training a deep learning surrogate model, using a data-set gath-
ered offline in various possible operating conditions.

Figure 5.3 presents the suggested hybrid framework alongside a black-box
data-drivenmodel. The baseline balck-boxmodel predominantly relies onwind
speed as its main input and is commonly studied in the literature as a benchmark
for predictingWT power curve [49]. The hybrid model, on the other hand, goes
a step further by estimating pitch and generator torque both below and above
the rated wind speed, utilizing wind and rotor speed estimations. Subsequently,
it predicts the aerodynamic behavior of the wind turbine by establishing a re-
lationship between healthy control parameters and wind speed.

5.2.3 Structure of the surrogate models

Adaptive neuro‑fuzzy inference system (ANFIS)

A hybrid learning algorithm of both the least-squares method and backpropa-
gation learning is used to train the network and optimize the parameters of a
fuzzy model capable of handling both quantitative and qualitative criteria. The
nonlinear mapping is carried out using the Takagi–Sugeno inferencemodel em-
ploying fuzzy if-then rules. In the fuzzification layer of the ANFIS structure,
the Gaussian Membership Functions (MF) of the crisp inputs are created by:

𝜇𝐴𝑖 (𝑇𝑔), 𝜇𝐵 𝑗 (𝑣), 𝜇𝐶𝑘 (𝜃), 𝑖, 𝑗 , 𝑘 = 1, ..., 𝑛, (5.11)

𝜇𝑥 = 𝑒
−(𝑥− 𝑎𝑖𝑏𝑖 )2 , (5.12)

where 𝜇𝐴𝑖 , 𝜇𝐵 𝑗 and 𝜇𝐶𝑘 are the MFs of fuzzy sets, which have a Gaussian
form characterized by the variance 𝑎𝑖 and center 𝑏𝑖 of the MF. In the rule layer,
each node output is denoted by the fuzzy inference system representing the
firing strength of a rule 𝑊𝑝, which is calculated by the multiplication of in-
coming signals (5.12). The purpose of the normalization layer is to normalize
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Figure 5.3: Proposed hybrid framework.
the weight function using (5.13).

𝑊𝑝


𝜇𝐴𝑖 (𝑇𝑔) · 𝜇𝐵 𝑗 (𝑣),
𝜇𝐵 𝑗 (𝑣) · 𝜇𝐶𝑘 (𝜃),
𝜇𝐴𝑖 (𝑇𝑔) · 𝜇𝐶𝑘 (𝜃),

𝑖, 𝑗 , 𝑘 = 1, ..., 𝑛, (5.13)

𝑊̄𝑝 =
𝑊𝑝

Σ𝑊𝑝
, 𝑝 = 1, ..., 𝑚. (5.14)

In the defuzzification layer, the output of nodes will be defined as the prod-
uct of first order polynomials 𝑓𝑝 and normalized firing strength 𝑊̄𝑝, where 𝑓𝑝
represents the fuzzy If–then rules:

𝑅1 : If𝑇𝑔 = 𝐴𝑛 and𝑣 = 𝐵𝑛,Then 𝑓𝑛 = 𝛼𝑛𝑇𝑔 + 𝛽𝑛𝑣 + 𝑟𝑛,
𝑅2 : If 𝑣 = 𝐵𝑛 and𝜃 = 𝐶𝑛,Then 𝑓𝑚 = 𝛽𝑛𝑣 + 𝛾𝑛𝜃 + 𝑟𝑛 ,

𝑅3 : If𝑇𝑔 = 𝐴𝑛 and𝜃 = 𝐶𝑛,Then 𝑓𝑚 = 𝛼𝑛𝑣 + 𝛾𝑛𝜃 + 𝑟𝑛 ,

where {𝛼, 𝛽, 𝛾, 𝑟} is the resultant attribute set, which belongs to each node.
Finally, one node represents the sum layer, which calculates the total output
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summation of all arriving signals by:

𝑌 =
𝑚∑
𝑝=1

𝑊̄𝑝 𝑓𝑝 . (5.15)

In this study, the Fuzzy C-means (FCM) method is used to compute the mem-
bership degrees, minimizing the following objective function:

J𝑞 =
𝑁∑
𝑙=1

𝐺∑
𝑠=1

𝑢𝑞𝑙𝑠 ‖𝑥𝑙 − 𝐺𝑠 ‖
2, 1 < 𝑞 < ∞, (5.16)

where N is the size of the data set, 𝑞 is a weighted index, 𝑢𝑙𝑠 is the degree of
membership of 𝑥𝑙 in the cluster 𝑞, which is 𝑙th of d-dimensional measured data.
𝐺𝑠 is the d-dimension center of the cluster. A Genetic Algorithm (GA) is used
to find the optimal weighting exponent q value for the FCM algorithm. The q
value determines the fuzziness degree in the clustering process and affects the
performance. The goal is to partition the dataset into the desired number of
classes and to calculate the cluster centers and membership degrees that assign
data points to clusters.

Long short‑term memory (LSTM) network

The LSTM network is a Recurrent Neural Network (RNN) based architecture
that has been commonly used for sequence regression-related application prob-
lems, e.g., [50, 51]. The main advantage of LSTM over standard RNN is that
it is able to capture not only the short-term temporal relations in sequence but
also the long-term relationship. This has been achieved by its specifically de-
signed network structure, as illustrated in Fig.5.4. For a specific LSTM unit,
if we denote the input at time step 𝑡 as 𝑿𝑡 := [𝑣𝑡 , 𝑇𝑔𝑡 , 𝜃𝑡 ], the flow within the
LSTM unit LSTM : 𝑿𝑡 → LSTM(𝑿𝑡 ) can be represented as:

𝒇 𝑡 = 𝜎(𝑾 𝑓 [𝒉𝑡−1, 𝑿𝑡 ] + 𝒃 𝑓 ),
𝒊𝑡 = 𝜎(𝑾𝑖 [𝒉𝑡−1, 𝑿𝑡 ] + 𝒃𝑖),
𝑪̂𝑡 = tanh

(
𝑾𝐶̂ [𝒉𝑡−1, 𝑿𝑡 ] + 𝒃𝐶̂

)
,

𝒐𝑡 = 𝜎(𝑾𝑜 [𝒉𝑡−1, 𝑿𝑡 ] + 𝒃𝑜),
𝑪𝑡 = 𝒇 𝑡 � 𝑪𝑡−1 + 𝒊𝑡 � 𝑪̂𝑡 ,

𝒉𝑡 = 𝒐𝑡 � tanh(𝑪𝑡 ),

(5.17)

where 𝜎, tanh represents the sigmoid and tanh activation functions respec-
tively;𝑾 𝑓 ,𝑾𝑜,𝑾𝐶̂ represent the weights and 𝒃 𝑓 , 𝒃𝑖 , 𝒃𝐶̂ , 𝒃𝑜 denote the biases.
[·] represents the concatenation operation and � is the Hadamard product. 𝒐𝑡
is the output gate’s activation vector, 𝑪𝑡 is the output cell state and 𝒉𝑡 is the
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hidden state that will be provided for 𝑡 + 1 steps recurrently. Importantly, we
remark that 𝑪𝑡 is the key factor that enables capturing long-term patterns. With
the elaborated LSTM unit, in order to increase the flexibility of the network to
capture the potential complex temporal correlations between the input and out-
put of the surrogate model, we construct an LSTM-based network architecture
illustrated in Fig.5.4: the constructed architecture consists of 3 LSTM layers,
with two dense layers afterward. We note that this network architecture is em-
pirically determined as leading to a satisfying performance in reality. For input
𝑿𝑡 any time steps 𝑡, this architecture has the following output:

𝒉𝑡 = LSTM3(LSTM2(LSTM1(𝑿𝑡 ))), (5.18)

𝒚𝑡 = Dense2(Dense1(𝒉𝑡 )), (5.19)

where LSTM gives one LSTM layer, Dense := 𝐼 (𝑾𝒙 + 𝒃) represents one fully
connected layer, where the linear activation function is used. One hundred
twenty-eight hidden units within each LSTM layer are used for the other hyper-
parameter of the network. The hidden unit for the first dense layer is 128, and
3 for the second layer.

To optimize the weights of the proposed LSTM network architectures, we
utilize the mean squared error as the objective function commonly used in a re-
gression problem. The Adam optimizer [52] is utilized as a stochastic gradient-
based optimizer. The model is implemented utilizing Keras under Tensorflow
2, and the parameters are trained with 100 epochs with a mini-batch size of
250.

Temporal convolutional neural network (TCN)

TCN is a convolutional type neural network. It works similarly to a standard
convolutional neural network while the convolution operates on the time series.
The convolutional kernel can either be causal (as depicted in Fig. 5.4), prevent-
ing any information leakage from the future time step, or use these parts of
information if in a feasible scenario. With stacked dilated convolutions, the
model is able to effectively expand the receptive field of the convolutional net-
work, hence getting the information from a very long context. More formally,
for a 1-dimensional time series input, and filters defined as 𝑓 ∈ {0, , 𝑘 − 1}, the
dilated convolution on an arbitrary element 𝑠 of the sequence is defined as:

𝐹 (𝑠) =
𝑘−1∑
𝑖=0

𝑓 (𝑖) · 𝑥 (𝑠−𝑑 ·𝑖) (5.20)

where the element 𝑠 will incorporate the information of the past up to 𝑘 (𝑑 − 1)
elements. For a more in-depth description of the neural network, we refer to
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the paper [29]. The TCN network structure to compare in this research consists
of 3 stacked TCN layers. The filter size is set to 32, we use a kernel 𝑘 with size
3, and a dilation of 𝑑 = {1, 2, 4, 8, 16, 32, 64} is utilized. For simplicity, not all
hidden layers are shown in the TCN Structure in Fig. 5.4. A residual block is
utilized (as shown in Fig. 1.b of [29]). After passing the 3 stacked TCN layers,
a dense layer is set to extract the final output time series. We follow the same
training routine as training LSTM and ANFIS models.

5.3 Health monitoring

This section introduces a health monitoring approach that utilizes the surrogate
models proposed in Section 5.2.2 to assess the current condition of a WT and
detect and diagnose anomalies. Figure 5.4 outlines the workflow of this ap-
proach, which commences with a data-gathering step that reflects the WT’s
operation under both healthy and faulty conditions. This step provides the
model with measured data for anomaly detection and performance assessment.
Once the surrogate model is created, the proposed hybrid structure can mimic
the healthy behavior of the system and discern normal and abnormal behavior
from the calculated deviations, i.e., the residuals. The next step involves using
the extracted features that can be identified and incorporated into the system’s
condition indicators. A classifier is then trained using a small set of labeled
anomaly data. In an iterative process, the highest-scored anomalies detected
will be used to update the classifier by introducing more faulty sets to the ini-
tial dataset through an automatic or manual labeling method. Additionally,
unknown anomalies (lowest or zero-scored data points) will be added to the
existing library and updated by repeating the feature extraction and dimension
reduction step. Finally, the classification model is updated using the brand-
new archived dataset from the current operation, considering thresholds and
the uncertainties of prediction errors. This updated model enables more accu-
rate detection and diagnosis of anomalies in the system.

5.3.1 Anomaly and degradation scenarios

The suggested health monitoring approach is developed and assessed in vari-
ous working conditions with different sources of faultiness, which have a high
chance of occurrence and can be falsely interpreted as normal degradation in de-
loading operations with curtailment. As shown in Fig.5.5, two control failures,
i.e., blade pitch angle and nacelle yaw position error, are considered, affecting
the rotational speed and causing electrical power degradation in full and partial
load regions, respectively. In this study, the blade pitch failure mode occurs
when one or two blade pitch motor mechanisms fail to respond to the control
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signals, lock the blade at a certain position, and stop creating pitch-angle de-
mands. Yaw misalignment is also implemented for yaw position errors from 5
to 20° when the WT is not fully facing the wind. This occurs when the wind
direction changes and the yaw control system fails to orient the WT rotor to-
wards the wind direction properly.
Moreover, PMSG abnormality is considered to assess the performance of the
proposed condition monitoring approach in all operating regions. The presence
of an electrical disturbance in the PMSG may occur at any operational condi-
tion and may interrupt or degrade electrical power. Abnormal behavior in the
PMSG is attained by adding nontracked order and random noise to the back
electromotive force (EMF) with a noise power of 1% to 5% of the EMF voltage
and 10ms sample time. The data in healthy and faulty states are obtained by run-
ning numerous simulations in the incoming flow field with all operating ranges
of wind speed and turbulence intensity levels of 5% to 15%. Figure 5.6 reveals
the scatter plot of the WT healthy and 20% curtailed operation (𝛽 = 80%)
as well as the mentioned anomalies with boxplots demonstrating the anomaly
locality, distribution, and skewness. The electrical power degradation is evi-
dent in pitch failure and yaw misalignment in full load and partial regions. The
PMSG abnormality subtly impacts the electrical power in all operating regions
compared to the two other anomalies. However, its impact hardly appears in
the rotational speed time-series signal.

5.3.2 Feature extraction and dimension reduction

When calculating condition indicators as summary statistics, it is crucial to
consider the system features that differentiate normal operations from abnor-
mal behaviors, including degradation in the form of curtailment. A good under-
standing of the system is necessary to select appropriate condition indicators
in two or multiple dimensions, and some experimentation may be required. In

Degradation
in the form of

curtailment

Degradation
in the form of

yaw misalignment

MPPT & Power
regulation

Healthy operation
Yaw misalignment
Pitch control failure
PMSG abnormality

Figure 5.5: Degradation in the form of anomalies/curtailment.
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Figure 5.6: WT operation in abnormal conditions.

this study, we analyze several features in both the time and frequency domains
for the electrical power and rotational speed signals, which can be combined to
create condition indicators that capture the overall ”unusualness” of the data.
The effectiveness of each feature in differentiating normality and abnormal-
ity is estimated and ranked using one-way ANalysis Of VAriance (ANOVA)
and Kruskal-Wallis [53]. Figure5.7 shows all the features used in this study,
which are ranked by their importance. This work employs Principal Compo-
nent Analysis (PCA) for efficiently reducing feature dimensions to enhance
computational efficiency.

5.3.3 Classification
In this study, Support Vector Machines (SVM) are used to classify the obtained
feature vectors, comparing the current observable value with the corresponding
healthy value provided by the surrogate models. Then faulty conditions are
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Figure 5.7: Features sorted by importance.

estimated and the occurred faultiness is identified. Different kernel functions,
which map the input samples into a higher dimensional space using a nonlinear
function 𝜙(·) and soft margin hyperplanes separating the data in the higher
dimensional space, are considered. The SVM, in general, solves the following
quadratic optimization problem:

min
𝑊,𝑏, 𝜉

1
2
‖𝑊 ‖22 + 𝐶

𝑁∑
𝑖=1

𝜉𝑖

𝑠.𝑡. 𝑦𝑖 (𝑊𝑇Φ(𝑥𝑖) + 𝑏) ⩾ 1 − 𝜉𝑖

, (5.21)

where (𝑥𝑖 , 𝑦𝑖) denotes the training set, 𝜉 is the slack variable that allows the
hard margin to be violated, 𝑊 and 𝑏 are N-dimensional vectors, and the off-
set defines the hyperplane equation. The parameter 𝐶 controls the trade-off
between achieving a larger margin and minimizing the number of misclassi-
fications. Then, a kernel function 𝑘 (𝑋𝑠, 𝑋 ′𝑠) is explicitly defined to calculate
the inner product in the image of the nonlinear mapping function 𝜉 (·). The
Gaussian, quadratic, and cubic kernel functions can be written as follows:

𝑘 (𝑋𝑠, 𝑋 ′𝑠) = exp

(
−


𝑋𝑠 − 𝑋 ′𝑠

2

2
2𝜎

)
, (5.22)

𝑘 (𝑋𝑠, 𝑋 ′𝑠) = 1 −


𝑋𝑠 − 𝑋 ′𝑠

2

2

‖𝑋𝑠 − 𝑋 ′𝑠 ‖22 + 𝐶
, (5.23)
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Figure 5.8: The SVM classification on lowest-ranked features.
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𝑘 (𝑋𝑠, 𝑋 ′𝑠) = (𝑋𝑇𝑠 𝑋 ′𝑠 + 1)3, (5.24)

where 𝑋𝑠 and 𝑋 ′𝑠 are two arbitrary samples and 𝜎 is the kernel width. Fig.5.8
illustrates the two-dimensional condition indicators and the Gaussian kernel
SVM classification performance for the lowest-ranked features, which have
complex distributions. Although the proposed classifier is robust enough and
still able to give appropriate boundaries, it results in local performance. There-
fore, the first ten high-ranked features are selected to achieve global perfor-
mance and reduce computational complexity. The hyperparameters are tuned
to find a hyperplane that separates the data perfectly into faulty and healthy
classes and reduces misclassification errors.

5.3.4 Enhancing Classification using surrogate model

The anomaly detection given in algorithm 3 aims to detect anomalies in mea-
sured data by utilizing the hybrid model that mimics the system behavior. After
creating and training the surrogate model using the offline data, the residuals
between the measured data and the hybrid model’s predictions will be calcu-
lated. Then, features are then extracted from the residuals, and practical fea-
tures are selected using one-way ANOVA. Condition indicators incorporating
these features in the time and frequency domain are created, and an initial clas-
sifier, SVM𝑖𝑛𝑡 , is trained using a small set of labeled anomalies under different
operating conditions. The algorithm iteratively updates the classifier by select-
ing and adding the highest-scored anomalies to the labeled dataset, followed by
retraining the classifier. The anomaly scoring relies on a distance-based scor-
ing method in which the abnormalities are characterized by being significantly
distant from the majority of the data points, considering the Euclidean distance
metric. Then, unknown anomalies, identified as the lowest-scored data points,
are added to the anomaly library and undergo feature extraction and dimen-
sion reduction. The SVM𝑖𝑛𝑡 hyperparameters are updated based on the reduced
feature set. The iteration continues until convergence is achieved. The final
output is an updated self-learned classifier, SVM𝑢𝑝, capable of accurately de-
tecting anomalies in the system. In general, the algorithm aims to improve the
strength and effectiveness of the classifier over time by experiencing more ab-
normalities. The iterative nature of the algorithm allows the classifier to learn
from new anomalies selected and added to the labeled dataset in each itera-
tion. By continuously updating the classifier with increasing irregularities, it
becomes more robust and adaptive to different types of abnormalities present in
the system. This iterative learning process helps enhance the classifier’s ability
to detect anomalies and improve its overall performance over time.
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Algorithm 3 Anomaly detection using surrogate model
Require: Measured data 𝑋 , anomaly librery𝑈
1: Create surrogate model 𝑀
2: Discriminator: Calculate residuals 𝑅̂ ← (𝑋 − 𝑀 (𝑋))
3: Extract features 𝐹 : 𝑓1, ..., 𝑓𝑛 from residuals 𝑅̂
4: Apply one-way ANOVA to select effective features 𝐹
5: Create condition indicators 𝐼 incorporating features 𝐹′
6: Train SVM𝑖𝑛𝑡 using small set of labeled anomalies 𝐴 for faulty scenarios

from anomaly library𝑈
7: Applying different kernel functions
8: Optimize SVM hyperparameters for the best kernel
9: while not converged do

10: Calculate anomaly scores 𝑆 for all data points in 𝑋
11: Sort the data points in 𝑋 based on their corresponding scores in 𝑆 in

descending order:
12: SortIndices← argsort(𝑆)
13: Select the 𝑟 highest-scored anomalies:
14: 𝐻 ← {𝑋 [SortIndices[𝑖]]}𝑟𝑖=1
15: Augment labeled dataset 𝐴 with 𝐻 to obtain 𝐴′ :
16: 𝐴′ = 𝐴 ∪ 𝐻
17: Update classifier SVM𝑢𝑝 using 𝐴′
18: end while
19: Identify unknown anomalies: Sort the data points in 𝑋 based on their cor-

responding scores in 𝑆 in ascending order: SortIndices← argsort(𝑆)
20: Select the 𝑟 ′ lowes-scored anomalies:
21: 𝐿 ← {𝑋 [SortIndices[𝑖]]}𝑟 ′𝑖=1
22: Add 𝐿 to the anomaly library𝑈′ : 𝑈 ∪ 𝐿
23: Perform feature extraction and dimension reduction on𝑈 to obtain reduced

feature set 𝐹′
24: Update SVM𝑖𝑛𝑡 hyperparameters
25: Repeat steps 8 to 15 return SVM𝑢𝑝

5.4 Simulation results

5.4.1 Prediction accuracy

In order to train the deep learning models, the time-consuming, computation-
ally expensive simulations are carried out offline to generate a training dataset
for numerous ranges of mean wind speed and turbulence intensities. The WT
behavior is monitored for 600s in each simulation with a sampling rate of 100s.
The steady-state operation of the WT is used for the training data. As a result,
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Table 5.1: Predicting accuracy of the baseline black box Model
vs. proposed hybrid physics-based deep learning model.

Model
Prediction Error of

𝜔𝑟 (rpm)
Prediction Error of

𝑃𝑒 (kW)
Inference
Time (Sec)

Baseline Hybrid Baseline Hybrid

ANFIS-GP 0.40 0.1196 139.11 41.7667 0.53
ANFIS-SC 0.38 0.1263 137.47 42.6894 0.14

ANFIS-FCM 0.38 0.1321 134.11 45.3367 0.14
ANFIS-FCM/GA 0.31 0.0891 97.15 26.1521 0.41

LSTM 0.21 0.0704 74.82 16.8951 0.78
TCN 0.60 0.1528 176.21 103.63 0.25

894 training datasets are obtained, each having a length of 55000 samples. In
order to provide a more efficient dataset for model training, each data sequence
is truncated to new sequences, each with a length of 1000 samples, resulting
in an expanded training data set with 49170 sequences. Finally, the LSTM
and ANFIS models are trained using 100 epochs. In order to evaluate the per-
formance of the models, we use another 100 original-length data as test data to
measure the performance of the predictive model. The prediction results for the
baseline black box model vs. the proposed hybrid physics-based deep learning
model are given in Table 5.1, comparing the employed deep learning meth-
ods, i.e., ANFIS Grid Partitioning (GP), Subtractive Clustering (SC), Fuzzy
C-Means (FCM), optimized FCM using Genetic Algorithm (GA), LSTM and
TCN. The Root Mean Square Error (RMSE) of both observable predictions,
i.e., rotational speed and electrical power, are quantified as follows:

RMSE =
1

55000

55000∑
t=1

©­«
√√√ 100∑

i=1
(ypredicted − ytarget)2ª®¬. (5.25)

The ANFIS-based, LSTM, and TCN architectures demonstrate signif-
icantly reduced RMSE values for rotor speed and electrical power output
within the hybrid framework, which integrates data-driven and physics-based
information. This signifies a notable enhancement in predictive accuracy
compared to the baseline black box model. Notably, the LSTM outperforms
ANFIS and TCN in terms of accuracy. Introducing genetic algorithms (GA)
to optimize FCM parameters notably boosts the accuracy and sensitivity of the
ANFIS model while drastically reducing execution time. In the case of TCN,
its performance excels when trained for extended epochs, and it can rival the
LSTM when the number of epochs is increased to around 300. However, to
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mitigate over-fitting risks and ensure a fair comparison, we have maintained
the number of training epochs at 100.

The improved accuracy across all deep learning approaches within the hy-
brid framework underscores the practicality and versatility of the proposed
method. Nevertheless, selecting among these deep learning surrogate models
should be influenced by the size of the training dataset and a trade-off between
the required inference time and prediction accuracy. These findings highlight
the superiority of the hybrid physics-based modeling approach, which adeptly
captures the intricate dynamics of wind turbine systems, resulting in more pre-
cise predictions of rotor speed and power output compared to the baseline black
box model, with a substantial 67.97% reduction in average RMSE.

The following subsection discusses the application of the proposed hybrid
model in the anomaly detection framework for health monitoring purposes.

5.4.2 Anomaly detection performance
In this section, the healthy prediction of the ANFISmodel is fed into the weakly
supervised health monitoring method for two types of operating conditions.
The first type represents the healthy and faulty operation of the WT in par-
tial and full-load regions without considering the transition zone. The healthy
predicted data needs to be differentiated from all the single anomalies or the
combination of PMSG abnormalities with either pitch failure or yaw misalign-
ment. The confusion matrices are shown in Fig.5.9, using the health codes, i.e.,
Healthy Operation including the curtailment (HO), PMSG Abnormality (PA),
Pitch Failure (PF), and Yaw Misalignment (YM). These indicate the best per-
formance of the updated SVM created by the proposed self-learning classifica-
tion strategy, compared with the conventional classification approach that uses
a Binary Decision Tree (BDT) to classify anomalies without considering the
updated learning approach. Even though the BDT presents rather satisfactory
accuracy among all applied classifiers (BDT and SVMs with different kernel
functions discussed in Table5.2), the results show using the proposed approach
with the updated SVM and Gaussian kernel function significantly improves
anomaly detection performance.

The second type of data used for evaluating the proposed algorithm includes
WT operation in the transition zone, where all the anomalies are likely to occur
while the control system performance degrades due to the frequent switching
between pitch and torque control mechanisms, supporting the FCR provision
of the deloaded WT. The performance of the SVM with the best kernel func-
tions, including execution time, minimum prediction speed, total misclassifi-
cation cost, and minimum accuracy, are presented in Table 5.2. Moreover, the
Receiver Operating Characteristic (ROC) curves and the area under the ROC
curve (AUC) for different searched kernel functions are illustrated in Fig.5.10,
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Figure 5.9: Performance of the classifiers for the first type data:
the baseline approach with the BDT and the proposed approach
with the self-learned SVM.

Figure 5.10: Anomaly detection for the second type data: the pro-
posed approach with the self-learned SVM and optimized param-
eters.
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Figure 5.11: Anomaly detection for the first data type applying the
proposed approach.

indicating that the cubic kernel function has the best performance. Applying
the Bayesian Optimization (BO) algorithm, with a wide range of searches be-
tween 0.001 and 1000 for kernel scale and box constraint, can improve the
search efficiency and increase the execution time, which may be less practical
from a computational point of view. Fig.5.11 demonstrates successful classi-
fications and highlights incorrect classifications within the scatter plot of the
two-dimensional highest-ranked feature space. This showcases the robust per-
formance of the proposed anomaly detection method, even when faced with
challenges such as sparsity and lack of linearity in the data points.

The presence of successful classifications in the scatter plot validates the
effectiveness of the proposed approach in accurately identifying healthy behav-
iors. The algorithm identifies and correctly classifies instances that exhibit pat-
terns and characteristics indicative of normal behavior. This demonstrates the
ability of the method to capture and understand complex relationships within
the data despite the inherent challenges posed by sparsity and nonlinearity.

Additionally, incorrect classifications in the scatter plot highlight the
method’s ability to detect anomalies that deviate from the expected patterns.
These incorrect classifications represent instances where the algorithm
identifies data points as anomalous, even though they may appear similar to
healthy data points that represent normal degradations due to TI and power
curtailment. This demonstrates the algorithm’s sensitivity to subtle variations
and its capability to identify anomalies that might not be apparent through
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conventional methods. As the confusion matrix illustrates in Fig.5.10, a

Table 5.2: The SVM kernel tricks for the second type data

Kernel
function

Execution
time (sec)

Min prediction
speed (obs/sec)

Total cost of
misclassification

Minimum
accuracy

Linear 6.061 16000 542 65.2%
Gaussian 3.279 11000 501 67.8%
Quadratic 19.235 12000 396 74.6%
Cubic 29.96 12000 332 78.7%

Cubic-BO 33.86 12000 293 81.2%

global optimization result is achieved by involving the kernel tricks for the
updated SVM. The pitch failure detection shows outperformance, while the
yaw misalignment detection has the lowest accuracy. The signal shapes of
electrical power and rotational speed in yaw misalignment, unlike the PMSG
abnormality and the pitch failure, do not deviate significantly. In the yaw
misalignment scenario, the anomaly appears in the form of degradation and
lower electrical power efficiency. Also, this kind of abnormality may occur
because of aerodynamic degradation due to a high level of turbulence intensity
or frequent transients from torque to pitch control action. Also, it can be chal-
lenging for the algorithm to distinguish the curtailment and the aerodynamic
degradation from yaw misalignment in the transition zone. Nevertheless,
by comparing the results shown in Fig.5.9 and 5.10, the proposed approach
gives a better result for both data types. Although the second dataset type
appears to be more challenging due to the inclusion of data from the transition
zone, the proposed self-learn classification performance is still satisfactory
compared to the baseline approach applied to the first dataset type without
considering operations in the transition zone. This observation indicates the
overall improvement of the proposed anomaly detection in the presence of
different sparsity levels in the dataset and different degradation scenarios.

5.4.3 Time window and computational trade-offs
By decreasing the size of the sliding window over the observable signals and
recording at a low sampling frequency, the detailed transient behavior of the
system can be captured and predicted by the deep learning models and, there-
fore, automatically translated into features for a more realistic and improved
classification. To comprehensively analyze the temporal dynamics of the sys-
tem’s behavior, it is essential to employ multiple time windows spanning from
seconds to minutes. Shorter time windows prove more effective for identifying
rapid fluctuations or anomalies, such as those associated with PMSG abnormal-
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ities or degradations due to turbulent wind conditions, which can occur within a
short time frame. In contrast, longer time windows offer a broader perspective,
facilitating the detection of gradual performance decline or persistent issues
like pitch or control failures.
Nevertheless, reducing the window’s duration comes with a trade-off. It in-
tensifies the computational workload and may hinder the optimization process
when searching for the best SVM kernel hyperparameters. Thus, when apply-
ing the proposed approach, it is crucial to carefully consider the choice of the
time window, taking into account the specific types of anomalies and a trade-off
between accuracy and computational feasibility.

In our study, we experimented with various time windows, and the most fa-
vorable results emerged within the 10-50-second window range. The first data
type exhibited the best performance with a 50-second time window. Remark-
ably, even when we reduced the time window to just 10 seconds for the second
data type, we observed an improvement in classification performance. There-
fore, since the proposed approach compromises fast and efficient computation,
the ANFIS-FCM and SVM-Gaussian kernel function with the lowest predict-
ing and execution time can be considered default settings for real-time health
monitoring approaches. On the other hand, the LSTM and SVM-BO are better
choices for a reasonably large window of time, i.e., more than 100s. These set-
ting options can provide a human operator or a fully automated intelligent one
with a practical tool to decide different arrangements depending on various op-
erational conditions, which might lead to a more dedicated health monitoring
system.

5.4.4 Limitations and future prospects
In future research, noteworthy challenges deserve closer attention. One signif-
icant challenge is data availability and quality for predicting healthy behavior,
which needs a more thorough examination. This includes finding solutions
for dealing with limited data, creating effective methods for marking unusual
events during the initial stages of model training, and managing the computa-
tional demands of complex models, especially when working with larger wind
farms. Moreover, the aging effects, another form of degradation, should be con-
sidered in predicting healthy operation. This means the hybrid model should be
adjusted, knowing the aging factors, or updated using the most recent datasets.
Addressing these challenges is fundamental for making progress in wind tur-
bine health monitoring.
Additionally, applying the proposedmethodology to different types of wind tur-
bines and various environmental conditions can benefit transfer learning tech-
niques, allowing the model to adapt to different situations. By understanding
how to transfer and adjust knowledge across different types of turbines and en-
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vironmental settings, it is possible to fully realize the potential of the proposed
approach and make it useful in a broader range of real-world applications.

5.5 Conclusion
In conclusion, this study introduces a hybrid physics-based deep learning mod-
eling approach that advances the field of wind turbine health monitoring and
anomaly detection, particularly in the context of providing Frequency Contain-
ment Reserve (FCR). The contributions of this study are three-fold: First, a
hybrid framework is presented that accurately predicts wind turbine health by
capturing the intricate interplay between stochastic wind speed fluctuations and
complex correlations between control sequences (pitch and generator torque)
and system responses. The proposed hybrid structure’s practicality in predict-
ing twomain observables, i.e., WT electrical power and rotational speed, shows
improvements compared to the baseline black box approach. This modeling
approach enhances anomaly detection by effectively distinguishing normal and
abnormal states. Second, this research introduces a self-learning approach with
an iterative framework, demonstrating notable improvements in classifier per-
formance. For employing Support Vector Machines (SVM) classification, co-
herent features are extracted from crucial observables in both time and fre-
quency domains, enhancing the accuracy of condition indicators. Third, a com-
prehensive range of anomaly and degradation scenarios are considered, includ-
ing those resulting from curtailment operations for FCR provision, blade pitch
control failures, yaw misalignment, and Permanent Magnet Synchronous Gen-
erator (PMSG) abnormalities. The results demonstrate that the proposed health
monitoring approach has improved performance and can detect anomalies that
may be falsely classified as healthy but still possess some level of degradation
due to turbulent intensities or deloading operations for FCR provision.
This work generally contributes to advancing wind energy system monitoring
and predictive maintenance strategies by comprehensively evaluating wind tur-
bine health and performance. It considers intricate operational conditions and
the interdependencies among control sequences, enhancing the interpretabil-
ity of anomaly detection and management of wind energy conversion systems.
However, challenges such as data constraints, labeling anomalies for initial
training, and model complexity that can be computationally intensive for larger
wind farms should be further investigated in future studies.
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Chapter 6

Conclusions and outlook

6.1 Conclusions

In conclusion, this thesis centers on data-driven-based adaptive and optimal op-
eration strategies for wind energy conversion systems, recognizing their signif-
icance in the global energy transition and their potential for mitigating climate
change. It acknowledges wind power’s clean and abundant nature but highlights
the challenges its intermittent and variable characteristics pose. The thesis em-
phasizes the need for advanced control strategies and monitoring techniques to
ensure the reliable and efficient operation of wind energy conversion systems
on a large scale, supporting ancillary services such as FCR.

Optimizing wind energy conversion systems necessitates pioneering meth-
ods that transcend traditional control and monitoring techniques to tackle the
distinct features and intricacies linked to wind energy. As discussed in Sec-
tions 1.1.3 and 1.5, energy conversion systems’ complexities require adaptable
operational approaches, especially when integrating them into electrical power
grids. Utilizing data-driven techniques holds promise for improving the model-
ing, control, and health monitoring aspects, ultimately enhancing the efficiency
of FCR-delivering wind energy conversion systems.

This dissertation’s primary aim is to identify and implement such strate-
gies, both at the wind farm supervisory control level and within individual
wind turbine control and health monitoring systems. Furthermore, this the-
sis research delves into hybrid methods, which possess the capacity to acquire
insights from data, innovative control strategies, and monitoring methods to
amplify the adaptive functionality of wind energy conversion systems, con-
sidering altering power reserve strategies in complex FCR markets, and sur-
mounting the inherent hurdles presented by the fluctuations, intermittence, and
unpredictability of grid frequency and wind patterns.

In the wind farm supervisory control domain, Chapter 2 proposes a novel
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operation strategy that optimizes the contribution of wind farms to reserve
and energy markets. It introduces a scenario-based two-stage stochastic pro-
gramming approach that considers uncertainties associated with intermittent
wind power and the complex aerodynamics of wake formation. The research
integrates a data-driven surrogate model of wake formation using an adap-
tive network-based fuzzy inference system (ANFIS). Employing the estimated
wake-controlled parameters, an allocation problem searches for an optimal dis-
tribution of the scheduled reserve among wind turbines. The proposed algo-
rithm showcases its potential to improve overall wind farm performance and
enhance FCR provision while actively optimizing wake-controlled parameters.

Building upon the insights gained from wind farm supervisory control, cfr.
Chapter 2, the thesis focuses onwind turbine local control to facilitate FCR acti-
vation at individual wind turbines. It develops advanced control algorithms that
address various limitations, such as wind turbine nonlinearities, stochasticity of
wind speed, and grid frequency, as discussed in Sections 1.5.2. Chapter 3 pro-
poses a data-driven Model Predictive Control (MPC) approach that accurately
predicts the turbine’s aerodynamic behavior and provides optimal control ac-
tions in response to grid frequency variations in above-rated and turbulent wind
conditions. The results given in Section 3.5 demonstrate the superior perfor-
mance of the MPC approach compared to baseline proportional-integral (PI)
controllers, enhancing power reference tracking, reducing mechanical loads,
and ensuring grid stability within the confines of the test cases considered.

Furthermore, Chapter 4 introduces an adaptive operational strategy for pro-
viding FCR in both full and partial-load operating regions, supporting varying
power reserve strategies. It employs a generator torque control system instead
of a blade pitch control system, considering the unpredictable behavior of grid
frequency and wind speed within the specific test cases. The research also
presents an adaptive reserve margin estimation method based on short-term
grid frequency predictions. It integrates gain-scheduled fuzzy-PI control to ad-
dress the challenges highlighted in Section 1.3.1, improving FCR provision in
turbulent wind conditions. Based on a 5MW-NREL offshore model, the simu-
lation outcomes illustrate enhancements achievedwith the fuzzy-PI approach in
terms of power reference tracking, rotor speed regulation, and the average me-
chanical load parameters studied. These results collectively validate an overall
enhancement in performance. This chapter demonstrates stable control perfor-
mance in all operating regions and reserve modes, ensuring reliable operation
and power regulation without excessive structural loads within the defined test
scenarios.

Moreover, the effective incorporation of the control strategies explored in
Chapters 3 and 4 into the wind farm’s supervisory control framework outlined
in Chapter 2 facilitates a cohesive and enhanced method for controlling opera-
tions and delivering FCR across various operational scenarios, as demonstrated
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within the parameters of the study. This approach aims to maximize the over-
all efficiency and adaptability of wind farms, positioning them as a compelling
solution for sustainable energy generation.

Finally, Chapter 5 addresses the challenges of wind turbine health moni-
toring discussed in Section 1.5.3, by presenting a novel hybrid physics-based
deep learning framework that significantly reduces the prediction error of wind
turbine behavior compared to the baseline black-box method within the context
of the study. The proposed algorithm is able to detect anomalies and degrada-
tions in wind turbine operation by approximating the time-varying correlation
between wind turbine control sequences and system response. It utilizes a hy-
brid structure and support vector machine for classification, accounting for un-
certainties such as wind stochasticity and power curve variations. The iterative
learning framework enables dynamic updating of the classifier, improving its
ability to learn from new anomalies during active operations within the defined
test cases. This approach enhances the accuracy and efficiency of wind turbine
health monitoring, leading to more efficient assessments of turbine conditions
and reduced downtime based on the specific models and conditions used in the
study.

This thesis provides a comprehensive approach to optimizing wind energy
conversion systems by addressing key challenges in wind farm supervisory con-
trol, local control, and health monitoring. The research introduces novel strate-
gies and techniques to enhance wind energy conversion systems’ performance,
reliability, and grid integration. By optimizing FCR provision, controlling
wake formation, improving control strategies, and enhancing health monitoring
techniques, this research contributes to a more sustainable and resilient future
powered by wind energy. The outcomes of this research are beneficial and gain-
ful for the efficient and reliable integration of wind power into the global energy
landscape, promoting sustainability and reducing greenhouse gas emissions.

6.2 Future research
In the future, several interesting fields of research can contribute to improv-
ing offshore wind farm performance to efficiently contribute to the ancillary
market. Here are some areas worth exploring:

6.2.1 Advanced Hybrid Control Strategy

The proposed data-driven MPC in this thesis, cfr. Chapter 3, employs histor-
ical and real-time data to learn a predictive model of the system dynamics.
This model captures the relationships between control inputs, system states,
and desired outputs. It provides a basis for predicting future system behavior
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and optimizing control actions to achieve specific objectives. In contrast, Rein-
forcement Learning (RL) employs an agent that interacts with the system and
learns optimal control policies through trial and error. As discussed earlier in
the introduction, the agent explores the system by taking action and receiving
feedback in the form of rewards or penalties based on predefined performance
criteria. By maximizing cumulative rewards, the RL agent iteratively improves
its control strategies. To overcome the RL challenges mentioned in 1.4.3, such
as robustness to uncertainties or incorporation of constraints, the hybrid control
system can be suggested that combines the predictive capabilities of data-driven
MPC with the adaptive learning of RL.

The MPC component provides a baseline control policy based on the
learned system model, while the RL component continuously refines and
adapts the control policy based on real-time feedback and exploration. During
the training phase, the RL agent explores different control actions and observes
the resulting system behavior. The agent adjusts its policy based on rewards
and penalties, gradually improving its understanding of the system dynamics,
finding optimal control strategies, and becoming more robust to uncertainties.
Once the RL agent is trained, it can be deployed in real-time control scenarios.
The agent interacts with the system, observes its current state, and selects
control actions based on the learned policy.

The data-drivenMPC component may still be utilized to provide initial con-
trol signals or as a fallback mechanism if the RL agent encounters unfamiliar
situations. The hybrid system continues to adapt and learn during online opera-
tions. As the RL agent interacts with the system, it gathers new data and updates
its control policy based on the observed outcomes. This adaptive learning en-
ables the system to improve its performance over time and handle uncertainties
or changes in the system dynamics. The performance of the hybrid control sys-
tem is regularly evaluated and refined based on feedback from the actual system
operation. The control policies and model parameters may be adjusted, and ad-
ditional training data can be incorporated to enhance the system’s effectiveness
and robustness. The hybrid approach combining data-driven MPC and rein-
forcement learning (RL) can bring several benefits to wind turbine and wind
farm applications:

By integrating data-driven MPC, the hybrid system can benefit from his-
torical and real-time data to learn accurate predictive models of wind turbine
behavior. This enables more precise control actions and better tracking of de-
sired performance objectives, such as electrical power and rotational speed set
points, induction factors, or mechanical loadings. The system can optimize
control strategies based on learned system dynamics and historical data pat-
terns.

Wind turbine and wind farm operations are subject to various uncertainties,
including fluctuating wind conditions, mechanical loads, and system faults.
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The RL component of the hybrid system allows for adaptive learning and con-
trol policy refinement, enabling the system to adapt to changing conditions and
optimize control actions accordingly. This adaptability improves the system’s
ability to respond to uncertainties and disturbances. Wind turbines are exposed
to varying wind conditions and changing power grid requirements, leading to
mechanical loads, fatigue, and structural wear. The hybrid system can incor-
porate load reduction requirements into the control strategies.

Using the data-driven MPC to optimize control actions and RL to learn
and adapt in real time, the system can effectively mitigate loads and reduce fa-
tigue, improving turbine lifespan and reducing maintenance costs. The hybrid
control system can enhance the wind farm’s ability to participate in ancillary
markets, such as frequency regulation or grid stability services. By optimizing
control actions based on learned models and RL-based adaptation, the system
can efficiently respond to grid demands, contribute to grid stability, and pro-
vide ancillary services, thereby increasing the economic value of wind farm
operations.

The hybrid system can also use the data-driven surrogate models to monitor
system behavior and identify potential faults or anomalies. The system can de-
tect deviations and trigger appropriate actions by continuously comparing the
predicted behavior with real-time measurements, such as fault detection, isola-
tion, and fault-tolerant control strategies. RL can also adapt the control policies
in the presence of faults to maintain system performance and safety. The hybrid
control system can optimize wind turbines and wind farms’ energy capture and
power production. By learning and adapting control policies based on historical
data and real-time feedback, the system can make more informed decisions re-
garding turbine operation, rotor speed, pitch control, and power set points. This
optimization can lead to increased energy production, improved power quality,
and better integration with the grid. Overall, the hybrid approach combining
data-driven MPC and RL offers the potential for more accurate, adaptive, and
efficient control of wind turbines and wind farms. It enables improved perfor-
mance, load reduction, fault detection, uncertainty adaptability, and optimized
energy capture, enhancing overall system operation, reliability, and economic
benefits.

6.2.2 Integration of Energy Storage
The integration of energy storage systems, such as electrolyzers for hydrogen
production, can be promising in improving offshore wind farm performance,
particularly in providing ancillary services. Offshore wind farms face vari-
ous challenges related to the intermittency of wind energy and the need for
grid stability. By integrating energy storage systems like electrolyzers, off-
shore wind farms can store excess generated energy as hydrogen through the
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process of electrolysis. This stored hydrogen can be utilized for multiple pur-
poses, contributing to improved performance and providing ancillary services.
One significant benefit of electrolyzers and hydrogen production is their ability
to address the intermittent nature of wind energy. During periods of high wind
production, when the wind farm generates surplus electricity, the excess power
can be directed to the electrolyzer. The electrolyzer converts the electrical en-
ergy into hydrogen gas by splitting water molecules into hydrogen and oxygen.
This process enables the efficient storage of renewable energy in the form of hy-
drogen. The stored hydrogen offers various possibilities for enhancing offshore
wind farm performance and providing ancillary services. Firstly, hydrogen can
be utilized as a direct energy source during low wind or high electricity de-
mand periods. The stored energy can be converted back into electricity using
hydrogen fuel cells, providing a reliable and dispatchable power source. This
capability ensures a steady and predictable power supply, contributing to grid
stability and reliability.

The modeling and control approaches discussed in this thesis can be further
improved to provide a higher level of adaptability in the operation of offshore
wind farms with integrated energy storage. The control system can continu-
ously monitor and analyze data to forecast energy production, storage capacity,
and grid requirements. This information can be incorporated in the wind farm
supervisory optimization problem discussed in Chapter 2 to enable better plan-
ning and decision-making, optimizing the overall performance and reliability
of the system.

Furthermore, the discussed operational strategies in this thesis can play a
beneficial role in optimizing the operation of the integrated system. The FCR
control architecture introduced in Chapters 2 and 4 can be improved to assess
the grid conditions, energy demand, and hydrogen storage capacity to deter-
mine the optimal allocation of energy between wind turbines, producing hy-
drogen, and meeting other energy demands. The data-driven MPC suggested
in Chapter 3 can be adapted to optimize the operation of electrolyzers as well
as wind turbine’s power reference tracking to ensure efficient energy conver-
sion and storage. The integration of electrolyzers and hydrogen production
enhances the wind farm’s participation in other ancillary service markets, such
as frequency regulation, voltage control, and black start capabilities. The wind
farm can quickly respond to grid demands by releasing stored hydrogen when
needed, contributing to grid stability and power quality. This flexibility and
ability to provide ancillary services can generate additional revenue streams
for wind farm operators.



i
i

i
i

i
i

i
i

6.2 Future research 207

6.2.3 Advancing wind turbine health monitoring and ancillary ser-
vices reliability

In wind turbine operations, achieving operational superiority involves address-
ing various aspects, including wind turbine health monitoring, system reliabil-
ity, resilience, and the dependable provision of ancillary services, such as Fre-
quency Control Reserve (FCR). Chapter 5 introduces a hybrid physics-based
deep learning modeling approach, highlighting the critical need for continuous
research and innovation in several key areas. The quality and quantity of data
are central to the effectiveness of wind turbine health monitoring and FCR pro-
vision. Future research should prioritize expanding datasets, incorporating data
from diverse wind turbines in various geographical settings and operating con-
ditions. Furthermore, exploring advanced data augmentation techniques, such
as synthetic data generation andmissing data imputation, can address data limi-
tations. A more comprehensive dataset not only strengthens anomaly detection
but also enhances the precision of FCR predictions, ultimately bolstering the
reliability of wind farm operations.

Moreover, future research should explore methods for fine-tuning models
for multi-subsystem frameworks, i.e., wind farms with different manufactured
wind turbines. This involves customizing the model to specific turbine configu-
rations or exploring advanced transfer learning techniques. Adapting the model
ensures optimized performance and resilience, enabling it to excel in varying
operational scenarios. These systems should integrate with Supervisory Con-
trol and Data Acquisition (SCADA) systems, allowing for continuous model
updates based on real-time data. This adaptability is essential for staying tuned
to dynamic conditions and ensuring the model remains effective in practical
wind farm environments.

Efforts should also focus on enhancing the model’s interpretability for in-
formed decision-making. Additional research should investigate the model’s
robustness against failures and data anomalies to ensure dependable perfor-
mance. Developing collaborative systems that combine self-learned anomaly
detection approaches with human expertise enables a comprehensive perspec-
tive on turbine maintenance and operational decision-making. This collabora-
tive approach enhances wind energy systems’ reliability and resilience, ensur-
ing optimal and reliable ancillary service provision.

Finally, future research should integrate monitoring system information
into maintenance strategies and ancillary service schedules, optimizing oper-
ations. Economic assessments are vital for assessing the cost-effectiveness of
implementing monitoring systems. Additionally, ensuring compliance with in-
dustry standards and regulations is fundamental for the reliable provision of
ancillary services, particularly FCR. In conclusion, these ongoing research di-
rections have the potential to strengthen the reliability, resilience significantly,
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and overall sustainability of wind energy systems, contributing to a more envi-
ronmentally friendly and efficient future.

6.2.4 Virtual Power Plants and Aggregation
Another research area for further investigation is Virtual Power Plants (VPPs)
and aggregation techniques that can offer innovative approaches to improve off-
shore wind farm performance and grid integration. Aggregating multiple off-
shore wind farms into a single VPP can enhance their collective performance
and grid integration. By combining the power output from various wind farms,
the VPP can provide a more stable and predictable power supply to the grid.
Aggregation allows for better management of fluctuations in wind power gen-
eration, as the combined output tends to be smoother and more controllable
than individual wind farms. VPPs can also employ dynamic load management
techniques to optimize wind energy utilization. By monitoring real-time grid
conditions and electricity demand, the VPP can adjust the load profiles and
effectively balance the power consumption with the offshore wind farm’s gen-
eration capacity. This approach maximizes wind energy utilization, reduces
curtailment, and improves grid stability.

Moreover, integrating energy storage systems with offshore wind farms
within a VPP can enhance grid integration and improve performance. Energy
storage technologies, such as large-scale batteries or compressed air energy
storage, can store excess wind energy during periods of low demand or high
wind output. The stored energy can be dispatched when demand is high or wind
conditions are suboptimal, smoothing out fluctuations and increasing grid reli-
ability. In parallel, VPPs can participate in demand response programs, where
consumers voluntarily adjust their electricity usage based on grid conditions
and price signals. By coordinating and aggregating the response of multiple
consumers connected to the VPP, it can act as a flexible resource, balancing
supply and demand. This approach helps to optimize the utilization of wind
power and improve the integration of offshore wind farms into the grid.

Additionally, advanced forecasting techniques and predictive analytics dis-
cussed in this thesis can contribute to offshore wind farms’ operational planning
and scheduling within a VPP. Accurate wind power forecasts enable better pre-
diction of the available generation capacity, which helps optimize the schedul-
ing of maintenance activities, energy trading, and grid integration. VPPs can
improve offshore wind farms’ overall performance and reliability by reducing
forecasting errors. The VPPs and aggregation techniques can contribute to op-
timizing offshore wind farm performance and enhancing their integration with
the grid. Implementing these strategies requires advanced control and coordi-
nation systems and regulatory frameworks that enable VPPs to participate in
energy markets and grid services.
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